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A REPRESENTATION OF PARTIALLY 

ORDERED PREFERENCES1 


Carnegie Mellon University 

This essay considers decision-theoretic foundations for robust 
Bayesian statistics. We modify the approach of Ramsey, de Finetti, Savage 
and Anscombe and Aumann in giving axioms for a theory of robust 
preferences. We establish that preferences which satisfy axioms for robust 
preferences can be represented by a set of expected utilities. In the 
presence of two axioms relating to state-independent utility, robust prefer- 
ences are represented by a set of probability/utility pairs, where the 
utilities are almost state-independent (in a sense which we make precise). 
Our goal is to focus on preference alone and to extract whatever probabil- 
ity and/or utility information is contained in the preference relation when 
that is merely a partial order. This is in contrast with the usual approach 
to Bayesian robustness that begins with a class of "priors" or "likelihoods," 
and a single loss function, in order to derive preferences from these 
probability/utility assumptions. 

1. Introduction and overview. 

1.1.Robust Bayesian preferences. This essay is about decision-theoretic 
foundations for robust Bayesian statistics. The fruitful tradition of Ramsey 
(1931), de Finetti (1937), Savage (1954) and Anscombe and Aumann (1963) 
seeks to ground Bayesian inference on a normative theory of rational choice. 
Rather than accept the traditional probability models and loss functions as 
given, Savage is explicit about the foundations. He axiomatizes a theory of 
preference using a binary relation over acts, A, 5 A,, "act A, is not pre- 
ferred to act A,." Then, he shows that 5 is represented by a unique 
personal probability (state-independent) utility pair according to subjective 
expected utility. That is, he shows there exists exactly one pair ( p ,U) such 
that, for all acts A, and A,, A, 5 A, if and only if Ep,,[A,] < E,,,[A,]. 
[More precisely, in Savage's theory what is needed to justify the assertion 
that p is the agent's personal probability is the added assumption that each 
consequence has a constant value in each state. Unfortunately this is ineffa- 
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ble in Savage's language of preference over acts. [See Schervish, Seidenfeld 
and Kadane (1990)l. We discuss this in Section 4, below. 

In recent years, either under the headings of Bayesian robustness [Berger 
(1985), Section 4.7; Hartigan (1983), Chapter 12; Kadane (1984)l or sensitiv- 
ity analysis [Rios Insua (199011 it has become an increasingly important issue 
to show how to arrive a t  Bayesian conclusions from logically weaker assump- 
tions than are required by the traditional Bayesian theory. Given data and a 
particular likelihood from a statistical model, for example, how large a class 
of prior probabilities leads to a class of posterior probabilities that are in 
agreement about some event of interest? Our work differs from the common 
trend in Bayesian robustness in much the same way that Savage's work 
differs from the traditional use of probability models and loss functions in 
Bayesian decision theory. Our goal is to axiomatize robust preferences di- 
rectly, rather than to robustify given statistical models. Results in this theory 
are strikingly different from those obtained in the existing Bayesian robust- 
ness literature. 

For an illustration of the difference, suppose two Bayesian agents each 
rank the desirability of Anscombe-Aumann ("horse lottery") acts according 
to his/her subjective expected utility. ("Horse lotteries" are defined in Sec- 
tion 2.) Let (p,, Ul) and (p, ,  U,) be the probability/utility pairs representing 
these two decision makers and assume they have different beliefs and values: 
that is, assume p ,  # p, and Ul # U,. Denote by +, and +, their respec- 
tive (strict) preference relations, each a weak order over acts. Suppose now 
our goal is to find those coherent (Anscombe-Aumann) preference relations 
-< corresponding to probability/utility pairs ( p ,  U) such that the following 
Pareto condition applies: 

If Epl,U1[ All < Ep1,U1[A21 and EP2,U2[ A11 < EP2,U2[A,], then Ep,U[ All < 
Ep,u[A21. In words, when both agents strictly prefer act A, to act A,, then 
this shared preference is robust for all efficient, cooperative Bayesian deci- 
sions that the pair make together. [We assume that though the two Bayesian 
agents may discuss their individual preferences, nonetheless, some differ- 
ences remain in their beliefs and in their values even after such conversa- 
tions. See DeGroot (1974) for a rival model.] We have the following theorem. 

THEOREM1 [Seidenfeld, Kadane and Schervish (1989)l. Assume there 
exists a pair  of prizes {r*,r*} which the two agents rank in the same order: 
r ,  +, r *  (i = 1,2). Then the set of probability/utility pairs, each of which 
satisfies the Anscombe-Aumann theory and each of which agrees with the 
strict preferences shared by these two decision makers, consists exactly of the 
two pairs themselves {( p,, Ul), (p, ,U, )}. There are no other coherent, Pareto 
compromises. [There is no coherent weak order meeting the strong Pareto 
condition, which requires that A, + A, if A, siA, (i = 1,2) and a t  least one 
of these two preferences is strict.] 

Thus, with respect to Pareto-robust preferences, the set of probability/ 
utility pairs for the problem of two distinct Bayesians is not connected and 
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therefore not convex. Hence, a common method of proof-separating hyper-
planes (used to develop expected utility representations)-is not available in 
our investigation. This is just one way in which our methods differ from the 
usual robust Bayesian analysis. We want the strict preferences held in 
common by two Bayesians to be a special case of robust preferences. Applied 
to a class of weak orders, the Pareto condition creates a strict partial order 
+ : to wit, the binary relation + is irreflexive and transitive. 

Our view of robustness is that sometimes a person does not have a (strict) 
preference for act A, over act A, nor for A, over act A, nor are they 
indifferent options. Assume that strict preference is a transitive relation. 
Then such a person's preferences are modeled by a partial order. We ask, 
under what assumptions on this partial order is there a set of 
probability/utility pairs agreeing with it according to expected utility theory, 
a set which characterizes that partial order? In this we are exploring the 
possibility pointed out by Savage [(1954), page 211. 

The general form of our inquiry is as follows. Axiomatize coherent prefer- 
ence < as a partial order and establish a representation for it in terms of a 
set of probability/utility pairs. That is, we characterize each coherent, par- 
tially ordered preference + in terms of the set of coherent weak orders { 5} 
that extend it. We rely on the usual expected utility theory to depict each, 
coherent weak order 5 by one probability/utility pair ( p ,U ) .  Thus, we 
model + by a set of probability/utility pairs. 

In contrast with Savage's theory, which uses only personal probability, our 
approach is based on Anscombe-Aumann's "horse lottery" theory. Prefer- 
ences over "horse lotteries" accommodate both personal and extraneous 
(agent-invariant) probabilities. Also, by characterizing strict preference in 
terms of a set of probability/utility pairs, we improve so-called one-way 
representations of, for example, Fishburn [(1982), Section 111, as we show 
more than existence of an agreeing probability/utility pair. 

1.2. Overview. In outline, our approach is as follows: In Section 2 we 
introduce axioms for a partial order over Anscombe-Aumann horse lotteries 
(HL). Anscombe-Aumann theory contains three substantive axioms that 
incorporate the (von Neumann-Morgenstern) theory of cardinal utility for 
simple acts: 

1.A postulate that preference ( 5 )  is a weak order-analogous to Savage's 
PI.  

2. The independence postulate-analogous to Savage's P2, "sure thing." 
3. An Archimedean condition, which plays an analogous role to Savage's P6. 

OUP replacement axioms for these are: 

HL AXIOM1. A postulate that strict preference (<) is a strict partial 
order. 
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HL AXIOM 2. The independence postulate. 

HL AXIOM3. A modified Archimedean axiom for discrete (not just simple) 
lotteries. 

To avoid triviality, a commonplace assumption of expected utility theory is 
that not all acts are indifferent, for example, there exist two acts, W and B 
that do not satisfy B 5 W. Let + obey our (three) preference axioms on a 
domain of horse-lottery acts HR.We show (Theorem 2) how to extend + to a 
preference -: ' over a larger domain that includes two new acts B (best) and 
W (worst) where 

(VH1,Hz E H R )  [(B + ' H I  -:'W) & ( H I  -: H, ifandonlyif H1 +'H, ) ] .  

Then we establish three related theorems (Theorems 3, 4 and 5): + is 
represented by a nonempty (maximal and convex) set 77= {V:HR-+ (0,l) j  of 
bounded, real-valued cardinal utilities V(.) defined for acts. Each V E 77 
induces a weak order 5, that agrees with + on the domain of simple acts 
and almost agrees (Definition lob) with + on all acts. Moreover, given a set 
Z of bounded, real-valued cardinal (so-called) "linear" utilities, Z(.) defined 
on HR,the partial order formed using the Pareto condition with the set 3 
satisfies our three axioms for preference. 

In the light of the surprising "shape" that the family of agreeing subjec- 
tive expected utilities can have (Theorem I), we employ a modification 
of Szpilrajn's (1930) transfinite induction for extending a partial order. We 
show how to extend a partial order while preserving the other preference 
axioms. The proofs of all results appear in the Appendix. Also, we number 
definitions, lemmas, and corollaries to coincide with their logical order in our 
arguments, regardless of whether they appear for the first time in the body of 
the text or in the Appendix. 

In Section 4 we turn our attention to the representation of Zr as a set of 
subjective expected utilities. We discuss when a linear utility V over acts also 
is a subjective expected utility for a probability/utility pair ( p ,  U ) .  Corollary 
4.1 gives a representation of 77 in terms of sets of probability/state- 
dependent utility pairs ( p ,  {U,: j = 1 , .. . , n}), where the utility U,(L) of a 
(von Neumann-Morgenstern) lottery L may depend upon the accompanying 
state s,. (This follows up the issue raised in the first paragraph in Section 
1.1.) In Section 4.3 we introduce two axioms (HL Axioms 4 and 5) that 
parallel the fourth Anscombe-Aumann postulate. That postulate (and our 
replacements for it) permits a representation of preference using a (nearly) 
state-independent utility: where (with high personal probability) the value of 
a lottery L does not depend (by more than amount s > 0) upon the state in 
which it is awarded. In Section 4.3 we lean heavily on the proof technique of 
Section 3 in order to find a representation for the partial order -: in terms of 
a set of agreeing pairs of probabilities and (nearly) state-independent utili- 
ties, Lemma 4.3 and Theorem 6. 
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Section 5 is about conditional preference. Two theorems (Theorems 7 and 
8) relate conditional (called-off) partially ordered preferences and Bayesian 
updating of the family of unconditional personal probabilities that agree with 
an unconditional partially ordered preference. We provide an example involv- 
ing conditional probability that highlights the nonconvexity of the agreeing 
sets. In Section 6 we conclude with a review of several features that distin- 
guish our results. 

2. The formal theory. 

2.1. The act space: a domain for the preference relation. We provide a 
representation for a partially ordered strict preference relation over (discrete) 
Anscombe-Aumann (1963) horse lotteries-acts that  generalize von 
Neumann-Morgenstern (1947) lotteries to allow for uncertainty over states of 
nature. 

Let R be a set of rewards. We develop our theory for countable sets R. 

DEFINITION1. A simple (von Neumann-Morgenstern) lottery is a simple 
probability distribution P over R, that is, a distribution with finite support. A 
discrete lottery is a countably additive probability over R (with a countable 
support). Denote a lottery by L and its distribution by P. 

Horse lotteries are defined with respect to a finite partition of states. Let n-
be a finite partition of the sure event S into n disjoint, mutually exhaustive 
nonempty (sets of) states, n- = {s,, .. . ,s,: si n sj  = 0 iff i # j and Uj, ,(sj) 
= S}.  Strictly speaking, elements of n- are subsets of S. We take this 
approach rather than supposing S is finite, for example, rather than assum- 
ing S = {s,, . . . ,s,}. Then our analysis allows for elaborations of a given 
preference relation in a larger domain of acts defined over (finite) refinements 
of the partition n-. Having made this point, we allow ourselves the familiar 
convention of equating the set state sj  with its elements. That is, for 
notational convenience, often we shall use sj when we intend "members of 
sj.,, 

DEFINITION A simple (or discrete) horse lottery is a function from states 2. 
to simple (or to discrete) lotteries. Denote a horse lottery by H and denote the 
space of (discrete) horse lotteries on the reward set R by H,. 

In the tradition where acts are functions from states to outcomes, a horse 
lottery is an act with a lottery outcome. For example, the act that yields a 
50-50 chance a t  $10 and $20 provided the Republicans win the next Presi- 
dential election, and which yields a 0.25 chance a t  $5 and a 0.75 chance a t  
$10 if the Republicans do not win, is a horse lottery over a binary partition 
with two states: Republicans win and Republicans do not win. Thus, a 
constant horse lottery is just a von Neumann-Morgenstern lottery, and a 
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proper subset of these are the constant von Neumann-Morgenstern lotteries, 
that is, the acts which yield a specific reward for certain. 

Next, we define the operation of convex combination of two horse lotteries, 
"+ ", as the state-by-state mixture of their respective v.N-M lottery outcomes. 
Thus: 

The mixture of two lotteries is a lottery xL, + (1 - x)L, = L,, where 
PJr)  = xP1(r) + (1 - x)P,(r). For the special cases where each H is a 
"constant" act, that is, if H, is the lottery L, and H, is L,, Definition 3 
coincides with the von Neumann-Morgenstern operation of "+ " for lotteries. 

2.2. The axioms for order and independence. The von Neumann-
Morgenstern theory of preference over (simple) lotteries is encapsulated by 
three axioms: 

1. The assumption that preference 5 is a weak order relation. 
2. The independence postulate (formulated below). 
3. An Archimedean condition (discussed below). 

These axioms may be applied to horse lotteries also. Then the three axioms 
guarantee that (i) preference is represented by a (cardinal) utility V over acts 
with a property (ii) that utility distributes over convex combinations. To wit, 
given these three axioms: 

(i) There exists a real-value V defined on acts, unique up to positive linear 
transformations, where V(Hl) I V(H2) if and only if H1 5 H,; and 

(ii) V[xHl + (1- x)H,] = xV(H,) + (1 - x)V(H,). 

DEFINITION When a preference relation over acts satisfies (i) and (ii) we 4. 
say it has the expected (or linear) utility property and we call V an agreeing 
expected (or, linear) utility for 5 . 

Anscombe-Aumann theory requires a fourth postulate ensuring the exis- 
tence of a unique decomposition of V as a subjective expected, state-indepen- 
dent utility. That is, subject to a fourth postulate for preference, there exists 
a (unique) personal probability p defined on states and a utility U defined on 
lotteries (independent of states) so that: 

(iii) V(H) = i~ ( s j ) u ( L j )  
j= 1 

[Recall the notation H(sj) = Lj.] Key, here, is that U is a state-independent 
utility, defined on lotteries independent of the state in which they occur. To 
be precise, let HL be the constant horse lottery that yields lottery L in each 
state, HL(sj) = L. 
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DEFINITION The utility {U,:j = 1,. ..,n) is state-independent when, for 5. 
each lottery L and pair of states s j  and sj,, 

U,(L) = U,,,(L)= U(L). 

[For our purposes, and following the usual practice, the condition of 
Definition 5 is required only for states sj and sjn that are not "null," i.e., only 
when p(sj) # 0 is it worth restricting in a decomposition of a linear utility 
V.] If the utility is state-independent, for convenience, we drop the subscript 
(for states) and abbreviate it U. When (iii) obtains for a state-independent 
utility U, V(HL)= U(L). 

DEFINITION6. When a preference relation over acts satisfies (i)-(iii) we 
say it has the subjective expected (state-independent) utility property and we 
say the pair (p ,  U) agrees with 5 . 

In contrast to (iii), a decomposition of V by a subjective (possibly) state- 
dependent utility allows 

n 

(iii*) V(H)  = C p(sj)UJ(Lj). 
j= 1 


We examine such state-dependent decompositions in Section 4.1. 
Next, we propose versions of the first two Anscombe-Aumann axioms to 

accommodate our theory of preference as a partial order. We postpone our 
discussion of the Archimedean axiom to Section 2.4 to allow for a timely 
account of "indifference" in Section 2.3. 

In this paper, a partial order + identifies a strict preference relation. 

HL AXIOM 1. + is a strict partial order. It is a transitive and irreflexive 
relation on HR x HR. 

DEFINITION7. When neither H, < H, nor Hz + H,, we say the two 
lotteries are incomparable by preference, which we denote as H, - Hz. When - is transitive-corresponding to a weak order-then the relation 5 
(standing for "4 or - ") identifies a weak preference relation. Hereafter, we 
shall mean by "preference" the strict preference relation. 

HL AXIOM 2 (Independence). V (H,, H, and H,) and for each 0 < x I1, 

x H l + ( l - x ) H , < x H , + ( l - x ) H ,  i fandonly i fH,+H, .  

This version of independence may be used, also, as the second axiom in the 
Anscombe-Aumann theory or in the von Neumann-Morgenstern theory. 

2.3. Indifference (=). Next, we define a (transitive) relation of indiffer- 
ence, =, based on +, which will play a central role in our extension of < to 
a weak order. [See Fishburn (1979), Exercises 9.1 and 9.4, pages 126-127, for 
additional discussion.] 
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DEFINITION H, H, iff V H,, H4(0 < x II),8 (Indifference). = 

xH, + ( 1  -x )H ,  - H4 iff xH, + (1  -x )H ,  - H4. 

We establish several useful corollaries of the HL Axioms 1 and 2 about 
indifference. 

COROLLARY~.~.V H1,H2, ifH, -- H,, then H, -H,. 

That is, when two acts are indifferent, neither is preferred to the other. 

COROLLARY2.2. = is an equivalence relation. 

COROLLARY HI -- H2 if and only if V H,, Hq, and 0 < x I1,2.3. 

xHl + ( 1  - x)H, < ( + ) H 4  iff xH2 + (1  - x)H, + (+)H, .  

Corollaries 2.3 and 2.4 establish important substitution properties for 
elements of the same indifference equivalence class. 

2.4. The Archimedean axiom: continuity of preference. First, define con- 
vergence for acts. Let {H,) be a denumerable sequence of horse lotteries. 

DEFINITION9. {H,) converges to a lottery H*, denoted by {H,} * H*,  just 
in case the respective discrete lottery distributions {Py(.)}converge (point- 
wise) to the lottery distribution Pr(.). 

The third (Archimedean) axiom precludes infinitesimal degrees of prefer- 
ence. As we show in Theorem 4, it suffices for representing preferences by 
sets of agreeing real-valued utilities. 

HL AXIOM 3. Let {H,} * H and {M,} * M. 

(a) If V n( H, 4 M,) and (M < N), then ( H  + N). 
(b) If V n(H, + M,) and ( J  + H), then ( J  + M). 

The familiar Archimedean condition from Anscombe-Aumann theory (also 
from von Neumann-Morgenstern theory), denoted here as Axiom 3", is this: 

AXIOM3*. Whenever Hl + H2-:H,, 3 (0 < x, y < I), yH1 + (1 -y)H3 + 
H, + xHl + (1 - x)H,. 

However, Axiom 3* is overly restrictive for our purposes, as a simple 
example shows. 
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EXAMPLE2.1. Consider a set of three rewards R = {r, , r*, rb) and a 
minimal, one element partition comprising the single sure state n = {s). Then 
H, is  the set of von Neumann-Morgenstern lotteries on R. (Denote by r the 
horse lottery with constant prize r.) Let 7 =  {V,: 0 < x < 1) be a (convex) set 
of linear utilities, where Vx(r,) = 0, V,(r*) = x and Vx(rb) = 1. Figure 1 
graphs these utilities. 

Let +, be the partial order on lotteries generated by this set of utilities 
according to the weak Pareto condition. That is, L, <, L, iff (V V E 7 )  
Ev[Ll ]  < EVIL,]. By Theorem 4 (below), 4, satisfies HL Axioms 1and 2. 

yr, -t (1 - y)rb  -,r*.Of course, <, is represented by the (convex) set of 
agreeing (real-valued) utilities 7. 

Next, we provide a connection between the Archimedean condition HL 
Axiom 3 and = -indifference. 

COROLLARY2.5. Let {H,), {HA}* H ;  {M,), {MA) * M. If tl n(H, + M, 
and  Mk < HA), then H = M. 

We conclude this discussion of HL Axiom 3 by showing that  the familiar 
Archimedean axiom, Axiom 3*, follows from our replacement HL Axiom 3 
when preference over lotteries is a weak order. 

LEMMA 2.1. If 5 is a weak order over discrete horse lotteries meeting 
conditions HL Axioms 2 and  3, then 5 satisfies Axiom 3*. 

2.5. Utility for discrete lotteries. The theory of von Neumann and Morgen- 
stern addresses preference over simple lotteries, that  is, those with finite 
support. These constitute the subdomain of constant, simple horse lotteries. 
However, there are weakly ordered preferences over lotteries which satisfy 
the expected utility hypothesis (Definition 4) for simple lotteries, that  is, 
which are represented by a cardinal, linear utility V over the domain of 
simple lotteries, but which fail the expected utility hypothesis over the larger 
domain of discrete lotteries. [See Fishburn's (1979), Section 10, discussion; 

However, i t  fails Axiom 3*. Specifically, r, +, +, r* r , ,  but V (0 < y < 11, 
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also Fishburn (1982), Section 11.3. A similar problem arises in Savage's 
(1954) theory, as shown by Seidenfeld and Schervish (1983). In a related 
matter, Aumann's (1962, 1964) argument about a utility for a partially 
ordered preference does not apply when the set of rewards is denumerable 
rather than finite, even though all lotteries are simple. Kannai (1963) showed 
that, and strengthened Aumann's Archimedean condition to remedy the 
problem.] We address this problem with an extended dominance condition. 

Let r denote the simple horse lottery with constant prize r.  Recall that HL 
denotes the constant horse lottery that yields L in each state. Consider the 
following dominance principle: 

DOMINANCE.V (r, HL) if for each r ,  E supp(L), r, < r ,  then it is not the 
case that (r  + HL) [or, alternatively, if universally, r < r,, then not (HL < r)]. 

This weak dominance condition contrasts each reward r with the lottery L 
through the (countably many) constant horse lotteries r, taken from L's 
support. The condition precludes a preference for L over r if it occurs for r 
over each r,. 

Our first three axioms yield dominance, as the next lemma establishes. 

LEMMA2.2. HL Axioms 1-3 entail dominance. 

Based on Lemma 2.2, we may apply Fishburn's [(1979), page 1391 Theorem 
10.5 to argue that a weakly ordered preference 5 over discrete (horse) 
lotteries which satisfies our HL Axioms 2 and 3 has the expected utility 
property. (See Remark 1.) The import for our representation theorems is 
given in terms of agreeing and almost agreeing utilities for a partial order: 

DEFINITION A utility V agrees with a partial order V[H,] <10a. < iff 
V[ H,] whenever (HI + H,). 

DEFINITIONlob. A utility V almost agrees with a partial order < iff 
V[H,] I V[ H,] whenever (H, 4H,). 

Thus, when our strategy for extending a partial order + to a weak order 
5 succeeds, it induces a linear utility V that agrees with + for discrete 
horse lotteries, not just for simple ones. 

Unfortunately, our argument for extending a partial order < produces a 
set of expected utilities {V} each of which agrees with < for simple acts, and 
only almost agree with it for discrete acts. Of course, by itself the condition of 
"almost agreeing" is quite weak. A utility V that makes all options indifferent 
almost agrees with every partially ordered preference. The point, however, is 
that we consider an almost agreeing utility for a partial order < only in the 
case in which it agrees with + on all simple acts. [This idea parallels a 
similar distinction between a qualitative probability (a weak order on events) 
and a quantitative probability that agrees or almost agrees with it. See 
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Savage (1954), Section 3.3.1 Through Corollary 3.2, we provide a sufficient 
condition for the existence of a (convex) set of utilities that agree with < on 
all of H,. 

REMARK1. Fishburn's Theorem 10.5 uses the traditional Archimedean 
axiom Axiom 3*. However, by Lemma 2.2, Axiom 3* follows from the assump- 
tions that 5 is a weak order satisfying HL Axioms 2 and 3. Also, dominance 
is equivalent to Fishburn's [(1979, page 1381 Axiom 4c, given the other three 
axioms and our structural assumptions about the domain of lotteries. 

2.6. Bounded preferences. Next in our discussion of the axioms, we settle 
the question whether a partial order < satisfying HL Axioms 1-3 admits an 
unbounded utility that agrees with it or agrees with it on simple lotteries. It 
is well known that utilities for von Neumann-Morgenstern lotteries are 
finite. In light of our assumption that all discrete lotteries are acts, utilities 
that agree with < are bounded as well. 

COROLLARY Let 4 , it2.6. 4 satisfy H L  Axioms 1and 2. If Vagrees with 
is bounded. Hence, all utilities that agree with < are bounded. 

As noted above, we sometimes construct a utility V that agrees with a 
partial order < for all simple lotteries but (merely) almost agrees with < 
for discrete lotteries. Thus, as V may fail to agree with 4 on nonsimple acts, 
it is worthwhile to show (appealing only to simple acts) that each utility V we 
construct is bounded. For this purpose we formalize a condition that a 
partially ordered preference is bounded, and establish it as a corollary of two 
of our axioms, HL Axioms 1and 3. From the fact that a partial order < is 
bounded, we show that a utility V agreeing with it on simple acts also is 
bounded. 

Call a countable (finite or denumerably infinite) sequence of lotteries {Ha: 
n = 1,. . . }  an increasing (decreasing) chain if Hi < Hj (Hj 4Hi) whenever 
i < j. The following concepts deal with chains of strict preference. 

DEFINITION11a. Say 4 is bounded above if, for each increasing chain 
{Hn}, 

lim sup{x: (H2 < xHl + ( 1  - x ) ~ , ) )< 1. 
n - m  

DEFINITIONllb .  Say < is bounded below if, for each decreasing chain 
{Hnl, 

lim sup{x: (xHl + ( 1  - x)Hn < H2)}< 1. 
n - m  

DEFINITION < bounded if it is bounded both above and below. 1 1 ~ .  Call 
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LEMMA2.3. If < satisfies HL Axioms 1and 3, then < is bounded, that 
is, all 4 -chains are bounded. 

Also, Lemma 2.3 yields the following claim about utilities for rewards: 

COROLLARY Let W be a (real-valued) utility and assume that, in the 2.7. 
domain of simple lotteries, its strict order <,
 satisfies HL Axioms 1and 3. 
Then supRIW(r)l < M. 

Recall that a linear utility V is defined only up to a positive linear 
transformation. We use the facts reported by Corollaries 2.6 and 2.7 to 
standardize the units (0 and 1) for each V in a set of agreeing utilities 7 
(agreeing with < on simple acts, at least). 

DEFINITIONlld .  A set 7={V} of utilities is bounded if, for some stan- 
dardization of its elements, 

sup IV(H)I < m. 
~ , H R  

The problem we face is this. Though each V E T is bounded, there exist 
what are for our purposes undesirable standardizations of the V's which fail 
to satisfy Definition l ld.  For an illustration, recall Example 2.1. There, the 
domain of (simple) lotteries HR is generated by three rewards R = {r,, r*, r,} 
using a partition of one (sure) state. That is, Example 2.1 is about preferences 
over von Neumann-Morgenstern lotteries. A partially ordered preference 4, 

over HR arises (by the Pareto rule) from the convex set of utilities T= 
{V,: 0 < x < 11, where V,(r,) = 0, Vx(r*) = x and Vx(r,) = 1.That is, HLl <, 
HL2 iff V(HLl) < V(HL2) for each V E 7. 

Obviously, the two constant acts (the rewards) r, and r, bound the partial 
order 4 ,  that is, for each act HL different from r, and r,, r, <,
 H <, 
 r,. 
Moreover, in this standardization of 7,~up,,,~lV(H)l = 1. Hence, it is a 
bounded set of utilities. However, we may standardize the elements of 7 so 
that it fails the condition in question. Rewrite each Vx, instead, so that 
Vx(r,) = 0, Vx(r*) = 1and Vx(r,) = 1/X. Then lim,, , V,(r,) = m. 

To ensure a simple standardization which establishes our 7 s  are, indeed, 
bounded sets of utilities, we verify that (without loss of generality) we may 
introduce two rewards W and B (analogous to r, and r, in Example 2.1) that 
serve to bound the preferences for all other acts: Theorem 2. Then, the sets 7 
are bounded sets of utilities since we standardize all V E 7 with V(W) = 0 
and V(B) = 1. 

2.7. Standardizing + -preferences with "best" and "worst" acts. In this 
section we show how to extend the domain of a partially ordered preference 
by bounding it with "worst" and "best" acts. First, however, we review two 
concepts of "null" events. 
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DEFINITION An event e is the set of states in a subset T of n :  (V e) 312. 
( T c  n ) ,  e = UsET[s1. 

DEFINITION13. Call H, and H, a pair of e-called-off acts when H,(s) = 

H,(s) if s E e. 

Distinguish two senses of "null" events. 

DEFINITION14a. An event e is potentially null iff for each pair of e-called- 
off acts H, and Hz ,  H, - Hz. 

DEFINITION14b. Event e is esserttially nnull iff for each pair of e-called-off 
acts H,and Hz, H, = H,. 

It  is evident that  when event e is essentially null, so too is each state that  
comprises it. Denote by n the union of the essentially null states. I t  follows 
(as is proven next) that  the union of essentially null states is an essentially 
null event. Hence, n is the maximal essentially null event. 

COROLLARY Let N c be the subset of all essentially nnull states 2.8. n 
N = {sjl,.. . ,sjk}, with n = U N ( ~ ) .Then n is essentially nnull. 

THEOREM2. Assume < is a partially ordered preference (satisfying HL 
Axioms 1-3) over a set of discrete horse lotteries H R ,  defined on the partition 
r r n  = {sj: j = 1, . . .,n}. Let Rr = R u {W,B}, where neither W nor B is an  
element of R .  Then we may extend < to a partially ordered preference < '  
over H R ,  SO that: 

1. < '/HR = < . That is, < restricted to H R  is just < . 
2. V ( H € H R ) , W  < ' H < ' B .  
3. < ' satisfies HL Axioms 1-3. 

Since n = S iff < is trivial, that  is, iff V (H,, Hz), H, - H, [also, iff V 
(H,, Hz), H, - H,], without loss of generality, by Theorem 2, assume prefer- 
ence is not trivial by including rewards W and B. (This proposition, war-
ranted by Theorem 2, is the counterpart in our theory to Savage's P5.1 

3. Extending strict partial orders: the inductive argument. 

3.1. An overview. Let R = {r,, r,, . . . } be a countable (finite or denumer- 
able) set of rewards and let < be a preference over H R  satisfying HL Axioms 
1-3. Based on Theorem 2, without loss of generality, assume the existence of 
two distinguished rewards not in R: reward W, where W is the worst act, and 
reward B, where B is the best act. Acts W and B are to serve as the common 
0 and 1in a (convex) set 7 of bounded utility functions V that  agree with < .  
Hence for all H E H R ,  W < H < B. 

Let us highlight the major results in this section of our essay. 
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Our strategy is to use a transfinite induction to extend the preference + 
(a partial order) to a weak order 5 over simple horse lotteries in HR.Let + 
(= +, ) serve as the basis for the induction. The induction a t  the i th  stage 
extension of + , +i,obtains by assigning a utility ui to act Hi ,  V(HJ = ui, SO 

that $ =, viB + (1 - u,)W. The quantity ui is chosen (in accord with Defi- 
nitions 20 and 25 in the Appendix) from a (convex) set of target utilities for 
Hi ,  x (H i ) .  The sequence {Hi) is chosen (see Definition 26 in the Appendix) so 
that the limit stage <, is a weak order over HR.We use W and B as the 0 
and 1of our utility, as follows. 

Assume {H,}* H and H, E HR.The general target sets T ( H )  are de- 
fined through endpoints that bound the candidate utilities: 

DEFINITION17. Let v?(H) be the lim inf of the quantities x, for which 
Hn +,-, x,B + (1 - x,)W. 

DEFINITION18. Let v, ,( H )  be the lim sup of the quantities x, for which 
x,B + (1 - x,)W < i - l  H,. 

[The "utility" bounds u , (HI  and v*(H) do not depend upon which se- 
quence {H,) =, H is used, as explained in the Appendix.] Next, define the 
(closed) target set of utilities for an act H E HR: 

We report two key properties of F ( H )  with the following lemma. 

LEMMA3.1. Assume + satisfies the three axioms. Then: 

(i) u,(H) Iv*(H); and 
(ii) u,(H) = u*(H) = u, iffH = vHB + (1- uH)W, 

Our plan succeeds because < i  extends < ip l ,  it  satisfies the three HL 
axioms and it preserves the =,-,-indifference relations. Each weak order 
5, = 5, (corresponding to the limit stage relation " +, or =, ") is defined 
by inequalities in expected V-utility, based on the utilities ui for each act H~ 
in a (finite or) denumerable class X c HR.(As explained below, X is finite or 
denumerable depending upon whether R is.) We choose X to form a basis for 
5,, that is, each H E HR is a limit point of simple acts and each simple act 
has its utility fixed by some finite stage of the transfinite induction. Then, 5, 
extends + on simple acts in HR.Also, the utility V almost agrees with + 
over the discrete lotteries H,. That is, if H, < H,, then H, 5, H,. In 
Corollary 3.1, we provide sufficient conditions under which 5, extends + 
for all the acts in HR.(See Remark 2.) 

We show in Theorem 4 that each set 3 of (bounded, standardized) 
+,, induces a partial order, Rreal-valued utility functions over according to 

the Pareto preference relation, and <,
 satisfies our axioms. Of course, each 
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+,. agrees with ZEZutility 
agreeing with *, . However [Seidenfeld, Schervish and Kadane (1990), E.31, 
distinct convex sets of bounded utilities may induce the same strict partial 
order. Thus, our representation of the partial order + is in terms of the 
largest convex set of agreeing linear utilities-the union of all sets of utilities 
where each set induces + according to the Pareto condition. 

Assume + satisfies our axioms and let Z9 be the nonempty (convex) set 
of bounded utilities that  agree with + for simple acts. That is, 2T9 is the set 
of all bounded utilities with the property that, for simple acts H, and H2,  
H, + H2 only if for each utility Z in Z y ,  the expected 2-utility of H2 is 
greater than that  of HI. Let 7 be the nonempty (convex) set of utilities 
created for + by (our method of induction in) Theorem 3. Theorem 5 asserts 
4 # 7=z y .  Last, when the conditions of Corollary 3.1 apply, then (Corollary 
3.2) 7 is the nonempty set of all utilities that  agree with + . 

REMARK2. If the Archimedean axiom is ignored and only simple lotteries 
are considered, the induction for extending + to a weak order (in fact, to a 
total order) 5 over H R  is elementary and applies without a cardinality 
restriction on the reward set R and without need of the special acts W and B. 
See the Appendix to Schervish and Kadane (1990). There, we show the 
following: Let K be the cardinality of R. Using Hausner's (1954) result, the 
order 5 (= +, ) is a lexicographic expected utility. 

3.2. The central theorem. 

THEOREM3. Let + be a nontrivial partial order over H R  satisfying HL 
Axioms 1-3. Then: 

(i) For simple lotteries in H R ,  + can be extended to a weak order 
5 ,  = 5 satisfying HL Axioms 2 and  3. That is, 5 is uniquely represented 
by a (bounded) real-valued utility V over R which agrees with + for simple 
acts. I n  symbols, V (simple H,, H2E HR),  if (HI  + H2), then Ev[  HI ]  < 
Ev[H,], and if (HI  = H,), then E v [ H l ]  = Ev[H2]. 

(ii) V almost agrees with + . V (HI ,H, E H,), if ( H I  + H,), then E v [ H l ]  
-< Ev[ H2I. 

I t  is instructive to illustrate how 5, may fail to agree with + for some 
nonsimple lotteries in H,. The example motivates a condition on + which 
proves sufficient for +, to extend + . 

EXAMPLE3.1. Let ?Y= {Wj: j = 1 , .. . }  be a countable set of utilities on 
R = {r,: i = 1 , .. . }  with the two properties that  Wj(r,) = 0.25 if m # 2j ,  
while Wj(rZj) = 0.5. According to Theorem 4 (below), under the (weak) Pareto 

That is, 2T is a subset of the set of all utilities 

+, induces a partial order ?Yrule, which satisfies our three horse lottery 
axioms. Define the constant, nonsimple acts Ha and H, by Ha = {P(r,) = 



2183 PARTIALLY ORDERED PREFERENCES 


1/2" if i = 2m - 1,P(r,) = 0 otherwise) and H, = (P(r,)  = 1/2" if i = 2m, 

P(r,) +,(Ha0 otherwise}. Then, evidently = H,). However, a t  the k th stage 
<,
 <,, in the extension of we may arrange our choices of utilities for 
rewards so that V(r,) = 0.25 (k = 1 , ...). However, then 5 ,  does not extend 
+v as Ha -,H,. 

DEFINITION28. Given two subsets of < -preferences d and 9 ,  say that  d 
is a basis for 9 if every preference, (HI < H2) E9,is a consequence (under 
HL Axioms 1-3) of preferences in d. 

COROLLARY3.1. If there exists a countable basis 9 for +,  then there 
exists a (bounded) real-valued utility V and corresponding weak order 5 
that agrees with < on all of HR.  (Thus, a sufficient condition for the 
existence of an  agreeing 5 is that < is a separable partial order.) 

Next, we show that our axioms are not overly restrictive for representing a 
partial order by a (convex) set of agreeing utilities. We investigate relation- 

+, ships between a partial order (formed by the Pareto rule with a set 3of 
<, of utilities created by induction on 7utilities) and the set . Let 3 be a 

set of bounded utilities on R, standardized so that for Z EZ' and H E H R ,  
0 = Z(W) < Z(H)  < Z(B) = 1. Define the relation 
condition: 

THEOREM4. +% satisfies HL Axioms 1-3. 

+,
 on H R  by the Pareto 

Next, let 77 be the set of utilities that  can be generated from the partial 
order + according to our induction. Let xY be the set of all bounded 
utilities Z that agree with + on simple lotteries. 

Last, assume < satisfies our axioms, let 3 be the set of all utilities that  
agree with + and let 7 be the set of utilities created by (our induction in) 
Theorem 3. We state three immediate corollaries of Theorem 5: 

COROLLARY3.2. When + satisfies the separability condition of Corollary 
3.1, then 4 # 77= 3. 

COROLLARY The set 7 does not depend upon the ordering o f X  3.3. 

COROLLARY The set 7 is convex. 3.4. 
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4. A representat ion of < i n  t e rms  of probabilities a n d  s ta te-
dependent  utilities. 

4.1. The underdetermination of personal probability by HL Axioms 1-3. 
Let 7 be the set of utilities V, each of which (by Theorem 5) corresponds to a 
limit stage 5, in our inductive extensions of the partial order + .According 
to Theorem 5, T is the set of all and only utilities that agree with < on 
simple acts. According to Corollary 3.2, when < is separable, 7 is the set of 
utilities that agree with < .  We examine decompositions of V E 7 as a 
subjective expected (state-dependent) utility. 

Let 5 be a weak order over the discrete horse lotteries H,. Let p(.) be a 
(personal) probability defined on states in v , with P(n) = 0 for the set of 
5-null states n .  Finally, let U,(.) be a (possibly) state-dependent utility on 
the discrete v.N-M lotteries L,, defined for the 5 -nonnull states s,. That is, 
for each 5 -nonnull state, sJ E n ,  U, is a v.N-M utility. (For completeness, we 
may take U, to be a constant function when sj E n.) 

DEFINITION30. Say that 5 represented as a subjective expected (state- 
dependent) utility by the pair ( p ,  {U,: j = 1 , .. . ,n)), whenever 

(4.1) 	 H1 H z  iff Cp(sJ)U,(LIJ)  5 Cp(sJ)U,(LzJ) .  
J J 

For convenience, abbreviate the probability/(state-dependent) utility pairs as 
(P,  U,). 

We rely on a result due to Fishburn [(1979), Theorem 13.11 to show that 
each 5,, V E Z;C, bears the subjective expected utility property for a large 
class of ( p ,  U,) pairs. In fact, for each such 5,, the ( p ,  U,) pairs range over 
all mutually absolutely continuous probabilities defined on the 5,-nonnull 
states. Specifically: 

LEMMA4.1. Let 5 be a (nontrivial) weak order on HR satisfying HL 
Axioms 2 and 3. For each probability p(.) with support the (nonempty) set of 
5 -nonnull states, there is a (possibly) state-dependent utility U,(.) on discrete 
lotteries for which 5 has property (4.1) under ( p ,  U,). 

Putting Theorem 5 and Lemma 4.1 together, we have the following corol- 
lary: 

COROLLARY There exists a set ofpairs {(p(.), U,(.))),with p a personal 4.1. 
probability defined on the set of 5,-nonnull states in p and U, a state -
dependent utility over the discrete lotteries, where V ( H E HR), V(H) = 

Cjp(sj>x U,(Lj). 

[Being linear utilities, the U, have the expected utility property for lotter- 
ies. That is, U,(xL, + (1 - x)L2) = xU,(L,) + (1 - x)U,L,. Moreover, for each 
V E 7 ,  the set of personal probabilities ( p :  3 U, with 5, represented by 
(p,U,)] is closed under the relation of mutual absolute continuity.] 
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4.2. State-independent utilities and a counterexample. Anscombe and Au- 
mann's theory of horse lotteries introduces a fourth axiom which suffices for a 
unique expected utility representation of a weak order 5 by a pair ( p ,  U), 
with p a personal probability over states and U a state-independent utility 
over rewards. 

Recall Definition 5 , when U is state-independent, a lottery L has the same 
utility independent of the (nonnull) state sj. Hence [as in Savage's (1954) 
theory], U assigns a constant utility across (nonnull) states to each "constant" 
act. In Anscombe and Aumann's theory, then (4.1) is strengthened to read: 

(4.2) 	 H1 5 H2 iff Cp ( s j )u (L l j )  5 Cp(sj)U(Lzj) 
j j 

and each 5 is so represented by a unique ( p ,  U) pair. 
The existence of a state-independent utility for is assured through a 

contrast between (unconditional) preferences over constant horse lotteries 
and preferences over sj-called-off horse lotteries: pairs of acts that differ only 
in one state. Specifically, let HLt( i  = 1,2) be two constant horse lotteries that 
award, respectively, the v.N-M lottery Li in all states. Let Hi ( i  = 1,2) be two 
sJ-called-off horse lotteries with H,(sj) = Li [and Hl(s) = H2(s) for s # sj]. 
The Anscombe-Aumann (AA) axiom for state-independent utility reads: 

AA AXIOM4. Provided sj E n, for each such quadruple of acts, HL15 HL2 
iff H, 5 H2. 

(Recall, their Axiom 1stipulates that preferences are weakly ordered, 5 ; 
hence, in their theory there is no difference between "potentially null" and 
"essentially null" states.) 

This axiom requires that 5 -preferences over "constant" acts (such as the 
HLt)  are reproduced by called-off choices (the Hi) given each nonnull sj. The 
unconditional preference for v.N-M lotteries is their conditional (that is, 
called-off? preference, given a nonnull state. (We discuss conditional partially 
ordered preferences in Section 5.) 

I t  is significant to understand that AA Axiom 4, though sufficient to create 
state-independent utilities when preference satisfies the usual ordering, inde- 
pendence and Archimedean conditiong, does not preclude alternative ex-
pected utility representations by state-dependent utilities. Lemma 4.1 contin- 
ues to apply, even in the presence of the extra axiom for state-independent 
utilities. Weak orderings that satisfy the independence, Archimedean and 
state-independent utility axioms admit a continuum of different probabil- 
ity/utility representations, each in accord with (4.1). 

What the Anscombe-Aumann fourth axiom achieves, however, is to guar- 
antee that precisely one probability/utility pair, among the set of all pairs 
((p,  U,)} indicated by Lemma 4.1, satisfies the more restrictive condition, 
(4.2). In Anscombe and Aumann's theory, as in Savage's theory, this probabil- 
ity/utility pair ( p ,  U) is given priority over the others. That is, these theories 
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select the one (and only one) expected state-independent utility representa- 
tion of preference, in accordance with (4.2) and, thereby, fix a personal 
probability uniquely from 5 -preferences. 

We are not satisfied with a conventional resolution of the representation 
problem indicated by Lemma 4.1. If state-dependent utilities are plausible 
candidates for an agent's values, and we think sometimes they are, then the 
measurement question remains open despite the fourth axiom. What justifi- 
cation is there for a convention which gives priority to state-independent 
values? In two essays [Schervish, Seidenfeld and Kadane (1990, 1991)1, we 
examine the case of weakly ordered preferences without the extra axiom for 
"state-independent" utility. Here, instead, we adopt the strategy of imposing 
a modified Axiom 4 and asking which probability/state-independent utility 
pairs agree with the partial order + .  Unlike the Anscombe-Aumann or 
Savage theories, ours does not assert that these pairs of probability/(state- 
independent) utility functions identify the agent's degrees of beliefs and 
values. 

We adapt Anscombe and Aumann's final axiom to our construction by 
restricting it to states which are not potentially null. This produces the 
following axiom: 

HL AXIOM4. If sk is not + -potentially null, then for each quadruple of 
acts HL6, Hz (i = 1,2) as described above, HL1 < HL2 iff H, + H,. 

Suppose, + is a preference on horse lotteries subject to HL Axioms 1-4. 
Surprisingly, there may not exist a probability and state-independent utility 
agreeing with + [according to (4.2)], even for simple acts. Moreover, the 
problem has nothing to do with existence of potentially null states. That is, 
even if no state is potentially null, the fourth axiom (HL Axiom 4) is 
insufficient for the existence of a probability/state-independent utility pair 
agreeing with < . 

EXAMPLE4.1. Let R = {r,  ,r ,  r*} be three rewards and consider the set 
H, of horse lotteries defined on the binary partition {s,, s,}. Next, consider 
two probability/utility pairs (p i ,  Ui) (i = 1,2), where UYr,) = 0, Ui(r*) = 1, 
U1(r) = 0.1 and U2(r)= 0.4; also, p1(s1) = 0.1 and p2(s1)= 0.3. Define 
H, + H, iff + p " ( s , ) ~ i ( ~ l , , )p i ( s l ) ~ i ( ~ l , l )  < pi (s1)Ui(L, , , )  + 
p i ( s2 )~ i (L , , , )(i = 1,2). Then, by Theorem 4, + satisfies HL Axioms 1-3, 
and we claim it satisfies HL Axiom 4 as well. Moreover neither state is 
potentially null under < . 

The proof that + satisfies HL Axiom 4 is straightforward. We observe the 
following (expected utility) bounds on + -preferences for the constant horse 
lottery r. (tl 0.1 > E > O), (0.9 + &)r,  + (0.1 - ~ ) r *+ r < (0.6 - &)r,+ 
(0.4 + ~ ) r * .However, the utilities U b r e  state-independent and neither state 
is null for either p y i  = 1,2). That is, using conditional preference (see 
Definition 34, (Q 0.1 > E > 0) (0.9 + ~ ) r ,+ (0.1 - ~ ) r *+sj ,  r +s j  (0.6 -
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~ ) r ,+ (0.4 + ~ ) r *( j = 1,2). The utility bounds for r reproduce in both 
families of sj-called-off acts. Hence, + satisfies HL Axiom 4. 

According to Theorem 1, the two pairs ( p i ,  Ui)are the sole state-indepen- 
dent expected utilities agreeing with < [according to (4.211. Next, we assert 
that < may be extended to a strict partial order +", also satisfying HL 
Axioms 2-4, but where <" narrows the expected utility bounds for r ,  as 
follows: 0.9r, + O.lr* <" r <" 0.6r, + 0.4rh. 

We outline a general result for extending + by forcing a new strict 
preference H, < 'H,, when H, - Hz.This contrasts with the extension cre- 
ated through Definition 20, which, instead, forces a new indifference relation. 

Suppose H, and H, are elements of H R  that satisfy (1) H, - H, and (2) 
there do not exist two sequences {Hi,.} *Hi (i = 1,2), where V (n  = 1, .. . ), 
Hz,,+ H,, ,. Create an extension < ' of < as follows: 

DEFINITION(< '). V (Ha,HbE HR),  Ha < 'Hb if and only if either: 

(i) Ha + Hb(so < ' extends <) 
or 

(ii) 3 {Ha,.} * Ha and 3 {Hb,.}*Hband 3 {x,} with lim,,,{x,} + 1, 

CLAIM. + ' satisfies HL Axioms 1-3, provided + does. Also, H, < 'H,. 

We omit the proof which follows along similar lines for the demonstration 
of Lemma 3.3. Regarding HL Axiom 4, it suffices that < '  is formed by 
extending < using a target set endpoint, for example, let H, = v ,  B + (1-
v ,)W, where Y(H,) = [v ,,v*] and this interval has interior, that is, v ,  < v*. 
Then + ' satisfies HL Axiom 4 too. 

Last, for Example 4.1, apply the claim, twice over, first to force 0.9r, + 
O.lr*+ '  r ,  then to force r +" 0.6r, + 0.4r*. 

Consider the convex sets T and T "  of agreeing utilities for < and <" 
provided by Corollary 3.2. (These utilities agree since R is finite.) Because 
+" extends < , then 7"c T. A fortiori, each agreeing expected state- 
independent utility model for <" also is one for < . However, by Theorem 1, 
there does not exist an agreeing expected state-independent utility model for 
V E T" ,  since T "  excludes all (that is, both) expected state-independent 
utility models for < . Nonetheless, <" satisfies HL Axioms 1-4. This ends 
our discussion of Example 4.1. 

4.3. Representation of + in terms of (nearly) state-independent utilities. 
The four axioms HL Axioms 1-4 are insufficient for the existence of an 
agreeing state-independent utility. However, with the addition of a fifth 
axiom to regulate state-dependence for potentially null states, the resulting 
theory is sufficient for an agreeing "almost" state-independent utility. First, 
we make precise the notion of an "almost" state-independent utility. 
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Consider a set of probability/state-dependent utility pairs {(p,  U,)}, each 
pair agreeing with the partial order + for simple acts, according to (4.1). 

DEFINITION31. Say that + admits almost state-independent utilities for 
a set of n-rewards { r l , .  . . ,r,} if, for each c > 0, there exists a pair ( p ,  U,) that 
agrees with < on simple acts (and almost agrees, otherwise), where for a set 
of states S#= Isjl,. . . ,sj,}, p(S#) 2 1- E ,  

n ~ a x  lU,(ri) - U,,(ri)l5 C .  
s,,S,.€S# 

Say + admits almost state-independent utilities if it does so for each set of 
n-rewards, n = 1, .. . . 

Obviously, if ( p ,  U) agrees with + and U is state-independent, then + 
admits almost state-independent utilities. 

There are two problems created by state-dependent utilities. First, given 
the partial order + ,  we would like to indicate probability bounds for an 
event E by + -preferences between a constant act of the form H,(s) = XB+ 
(1 - x)W and the act HE(s) = B if s E E, and H,(s) = W if s P E. That is, 
in general, we want the upper probability bound p"(E) to be the l.u.b.{x: 
HE < H,} (or 1, if HE - B), and we want the lower bound, p,(E),  to equal 
the g.1.b.I~: H, + HE} (or 0, if HE - W). However, if such preferences are to 
indicate probability bounds, then we require that the rewards B and W carry 
state-independent utilities 1and 0, respectively. Thus the first problem. 

Second, if a state sj is potentially null under +,  then there are no 
+ -preferences among pairs of acts called-off in case sj does not obtain. Let 
Hsj  be the family of sj-called-off acts that yield outcome W for all s P sj. 
When sj  is a potentially null state, V (H,, Hz E Hsj), H, - Hz.  Suppose sV 
(V E 7 )extends + (on simple acts) and let {(p, U,)}be the set of probabil- 
ity/(possibly) state-dependent utilities which represent 5, according to 
(4.1). Then, if state sj is potentially null under + , unfortunately, HL Axioms 
1-4 impose too few restrictions on U, (the state-dependent utility, given state 
sj) even when p(sj) > 0. In particular, it may be that V(r,) > V(r,), yet for 
all the U,, U,(r,) IU1(rz). 

To resolve both these problems, we impose a fifth axiom-a requirement of 
"stochastic dominance" among lotteries. For each state sj  and each v.N-M 
lottery La,  define the set of acts {Hz,: Hfm(s) = (1 - 2-")W + (2-")La, if 
s P sj; Hfm(sj) = La for state sj} (m = 1,.. . ). Observe that, (V j )  
lim, ,,{HTm} = Hj,a E H s j  Moreover, H,, .(sj) = La. Then, we require the 
following axiom: 

HL AXOM5. For each two "constant" acts HLa(s) = La and HLp(s) = Lp, 
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Thus, exactly when Lp is + -preferred to L, (as constant acts), HL Axiom 
5 imposes a +-preference on sequences of pairs of lotteries, (H;,, H;,) 
which converge to the sj-called-off pair (H,, ,; Hj,p). Thus, we obtain the 
constraint (Definition 21 of the Appendix) " -I(H,, < Hj,,)." 

LEMMA4.2. Suppose + satisfies HL Axioms 1-5. Then, for each V E Y 
(of Theorem 3.1) we may select (exactly) one pair (pV, q V )  from the set of 
pairs {( p ,  U,)} provided by Corollary 4.1-where each pair represents d v  in 
accord with (4.1)-so that acts W and B have constant value and bound the 
state-dependent utilities of other rewards. In symbols, 

'(sj)' (Li,  Lk E LR-(w, HL,< HL,B ) ) ,  

iff 0 = q V ( W )I q V ( L , )  I q V ( L k )5 u,'(B) = 1, 

with a t  least one outside inequality strict for each sj  such that p(sj) > 0, and 
all inequalities strict for each s j  that is not + -potentially null. 

32.DEFINITION We call (pv, q V )  the standard representation of V. 

Thus, HL Axiom 5 (via HL Axiom 3) constrains state-dependent utilities of 
the rewards W and B in potentially null states, as desired. In the course of 
the proof of Theorem 6 (below), we explain how HL Axiom 5 also regulates 
the + -potentially null, state-dependent utilities of all v.N-M lotteries. 

Of course, HL Axioms 1-5 are insufficient for guaranteeing existence of a 
state-independent utility agreeing with < . Counterexample 4.1 applies, that 
is, + '  satisfies all five axioms (since no states are <'-potentially null). 
However, as we show next, these axioms suffice for an almost state indepen- 
dent utility. 

THEOREM6. Assume that < satisfies HL Axioms 1-5. 

(i) Then + admits almost state-independent utilities. 
(ii) If + has a countable basis 9,each ( p ,q.1pair in Definition 31 

agrees with + . 

There is a sufficient condition for the existence of a state-independent 
utility over the finite set {W, B, r,, . . .,r i , . . . ,r,}, using closure (at one end- 
point, a t  least) of the target sets q ( r i )  defined in Definition 19. 

LEMMA4.3. If the target sets T ( r , )  ( i  = 1,.. . ,n) are not open intervals, 
there exists a subset T' cT of expected utilities for + (agreeing on simple 
acts), where each V' E Y '  is standardly represented by the set of pairs 
{ ( p ' ,U,')} according to (4.1) and where U,'(ri) is state-independent (i = 

1 , ., , ,n). 
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Note: 7'may fail to be convex. Also, results similar to Lemma 4.3, using 
different assumptions, appear in Rios Insua (1992). Related ideas appear in 
Nau (1992). 

5. Conditional preference and conditional probabilities. Let e be 
an event. (Recall, we equate the set state sj with its elements.) Let HI and 
Hz be a pair of e-called-off acts. Suppose < satisfies HL Axioms 1and 2. 

LEMMA5.1. Let Hi and Ha be another pair  of e-called-off acts which agree 
with H1 and Hz (respectively) on e, that is, V ( s  $Z e), [ H;(s) = Ha(s)] and V 
(S E e), [ H,(s) = H;(s) and Hz(s) = Hh(s)]: (i) H, < Hz iff Hi  4 Ha and 
(ii) HI = Hz iff Hi  = Ha. 

Therefore, a 4 -preference (or = -indifference) among two e-called-off acts 
does not depend upon how they are called-off, that is, the preference (or 
indifference) does not depend upon how the acts agree with each other when 
e fails. This replicates the core of Savage's [(1954), page 231 "sure thing" 
postulate, P2, as that applies to our concept of a partially ordered preference. 

Consider a (maximal) subset of H R ,  denoted by H e ,  where every two 
elements of H e  form an e-called-off pair. Obviously, each such family He  of 
e-called-off acts is closed under convex combinations. 

DEFINITION Define = /He,  the restriction of to the family of 33. <, 
e-called-off acts in He .  We call 4, the conditional 4 -preference relation, 
given e. (The preceding lemma insures this relation is well defined, that is, it  
depends on e but not on how acts are called-off.) 

Note: The event ec is essentially null with respect to the conditional 
preference <,. 

DEFINITION Also, for each pair of horse lotteries H, and Hz ,  say that 34. 
Hz is 4 -preferred to H, given e, provided that, for some pair Hi and Hh 
(and by Lemma 5.1, provided for all pairs) of e-called-off acts agreeing 
(respectively) with H, and Hz on e, Hi 4, Ha. 

In light of Lemma 5.l(i) and because H e  is a subset of HR,  the following 
result is immediate. 

THEOREM7. If 4 (over Ha)  satisfies (a  subset of) HL Axioms 1-5, then 
4, (over He )  also satisfies the same horse lottery axioms, a t  least. 

Theorem 7 prompts an interesting question: What is the relation between 
(i) the set of conditional probability/utility pairs {p(  le), U,. ,I, given e, that 
arise from the representation of 4 over the family of acts H R  and (ii) the set 
of probability/utility pairs {p,, U,,j, ,} that represent the conditional prefer- 
ence <, over the restricted family of acts He? 
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The following discussion of conditional indifference tells some of the 
answer. 

DEFINITION35. Let =, be the conditional = -indifference relation, given 
e, defined by restricting = to acts in the family He .  Then, say that horse 
lotteries H, and H, are = -indifferent, given e, provided that for some pair 
Hi and Ha (and by Lemma 5.1, provided for all such pairs) of e-called-off acts 
agreeing (respectively) with H, and Hz on e, Hi =, HA. 

It is important, however, to see that =, is not always the same as the 
=-indifference relation (defined by Definition 8) induced by <, over acts 
solely in He. 

DEFINITION36. Denote by =He the = -indifference relation over ele-
ments of He,  induced by +,. 

Of course =,-indifference entails =He-indifference, but not conversely. H, 
and H, may be two e-called-off acts from a family Hewhich satisfies 
HI  Hz ,  but where, nevertheless, H, + Hz,  that is, HI  *, Hz.We illus- 
trate this phenomenon using a potentially null state which is not essentially 
null. 

EXAMPLE5.1. Consider a binary partition S = {s,, s,) and horse lotteries 
defined over a binary reward set R = {W, B). Suppose < is created by the 
Pareto principle applied to expected utility inequalities from the following set 
of probability/(state-independent) utility pairs: S = {(p, U): 12 p(s,) 2 0.5; 
U(B) > U(W)). Then, s, is potentially null: acts are - -incomparable when- 
ever they belong to a common Hsz family. [With p(sl) = 1, all elements of 
Hsz have equal expected utility.] Hence, <sz is vacuous. So, based on +sz 
restricted to a family Hsz, all pairs of (e-called-off) acts are zHs2-indifferent. 
However, the pair of s,-called-off acts (H,, Hz), defined by Hl(sl) = H,(sl) = 

W, H,(s,) = W and H,(s,) = B, though - -incomparable are not = -
indifferent: H, - H, and H, * Hz.This is shown as follows. Consider the act 
H, defined by H,(s,) = B and H,(s,) = W. Observe that 0.5H1 + 0.5H, -
0.7W + 0.3B, whereas 0.7W + 0.3B 4 0.5W + 0.5B = 0.5H2 + 0.5H,. This 
shows that H, 7t. HZ. 

Returning to the question, above, we state our central result about condi- 
tional probabilities and conditional preferences. 

THEOREM8. (i) If ( p ,  U,) belongs to the set of probability/utility pairs 
representing 4 ,  then the pair (p( le), U, ,I belongs to the set that represent 
the conditional preference 4,. 

(ii) Suppose that the pair ( p,, U,, j,e belongs to the set representing the 
conditional preference 4, with respect to the family He. Then for some pair 
( p ,  U,) in the set that represents 4 , p(  le) = p, and U,.,= U,, j E e ,  provided 
two conditions obtain: (1)The event e is not potentially null (with respect 



2192 T. SEIDENFELD, M. J. SCHERVISH AND J. B. KADANE 

to and (2) the expected utility Ve( ) (with arguments from He), corre- 
sponding to the pair (p,, U,, ,I, does not use < -precluded target endpoints, 
as regulated by Definition 21 (of the Appendix). 

Next, we offer an example of Theorem 8, relating Bayes' updating to 
conditional preferences. 

EXAMPLE5.2. Consider a partition into three states Is,, s,, s,} and acts 
involving the three rewards, W, r and B. Let r denote the constant act, with 
outcome r in each state. For j = 1,2 and 3, define the three acts Hj(sj) = B, 
Hj(s,) = W ( j  # k) and also the three acts Hj, ,(sj) = r and Hj, ,(s,) = W 
( j  # k). Apart from the strict preferences that follow because W and B are, 
respectively, the "worst" and "best" acts, suppose also the agent reports these 
preferences: 

0.5W+ 0.5H3,, < H, < H,, ,  < H, < H, < r < 0.5H3+ 0.5r. 

We investigate the standardized, state-independent utility representations 
for these preferences. That is, with U(W) = 0, U(B) = 1, let u = U(r), 
independent of the state sj. If we denote by pj  the probability of state sj, then 
the preferences above are modeled by each probability/utility pair 
(p , ,  p,, p3; U) satisfying 0 < 0.5p3u < p,  < p,u < p, < u < 0 . 5 ~ ~+ 0.5. 

For each 0 < u < 1, it is possible to determine the set 9 ( u )  of all 
(p , ,  pa ,  p,) that satisfy these inequalities. For example, the set P(0.5) is 
shown in Figure 2. The union of all sets 9 ( u )  x {u} such that 9 ( u )  # 0 is 
the set of all probability/utility pairs that agree with the strict preferences 
above. From this set, one can determine other preferences not listed above 
which must also hold if the axioms do. For example, it is required, though not 
obvious from the reported preferences, that 0.4B + 0.6W < r. [By contrast, it 
is obvious from the preferences above that (1/3)B + (2/3)W < r.] 

If we were to learn that, say, the event E = Is,, s2} occurred, we can 
determine which preferences are implied in the conditional problem. The set 
of all pairs (q,, u), where q, is a conditional probability of s, given E,  is 
shown in Figure 3. Observe that, as provided by Theorem 8, the set of 
conditional probabilities from Figure 2 is exactly the set represented by the 
vertical line (at u = 0.5) in Figure 3. However, the set shown in Figure 3 
is not convex since it contains the points (0.415,0.293) and (0.455,0.379), 
but does not contain the point (0.435, 0.336) = 0.5(0.415, 0.293) + 
0.5(0.455,0.379). 

6. Concluding remarks. There is a burgeoning literature dealing with 
applications of sets of probabilities. Separate from work on robust Bayesian 
statistical analysis, they occur also in the following settings: as a rival 
account to strict Bayesian theory for representing uncertainty, such as in 
Levi's (1974, 1980) theory for Ellsberg's (1961) "paradox"; relating to indeter- 
minate degrees of belief, as in Smith's (1961) theory of "medial odds" devel- 
oped by Williams (1976), Giron and Rios (1980), Walley (1991) and Nau 
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FIG.2 .  The set P(O.5) in Example 5.2.  

(1993); and as a method for capturing multiple "expert" opinions [Kadane and 
Sedransk (1980); Kadane (1986)l. In addition, sets of probabilities arise from 
incomplete elicitations, where some but not all of an agent's opinions are 
formalized by inequalities in probabilities and the question is what decisions 
are fixed by these partially reported degrees of belief; see Moskowitz, Wong 
and Chu (1988) and White (1986). Dual to sets of probabilities, the articles by 
Aumann (1962) and Kannai (1963) explore the existence of ("linear") utilities 
for von Neumann-Morgenstern lotteries when probabilities are completely 
specified. 

However, these efforts rely on convexity of the spaces of probabilities and 
utilities to arrive at  their conclusions. From our point of view, this mathemat- 
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U 

FIG.3. The set of conditionalprobabilities and utilities. 

ical convenience is justified under an assumption, for example, that at  least 
one of the agent's probability and utility is fully determinate. For instance, 
in light of Corollary 3.4, convexity is appropriate for Bayesian robustness 
when a loss function is specified but probability is left indeterminate. Like- 
wise, our theory endorses the use of a convex set of utilities given a 
determinate probability, as in Aumann's (1962) result concerning existence 
of a utility agreeing with a partially ordered preference over simple 
von Neumann-Morgenstern lotteries. However, as shown by Theorem 1, 
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partially ordered preferences that obey a (weak) Pareto condition may not 
admit a convex (or even connected) set of agreeing probability/utility pairs. 
One way to require convexity of the agreeing sets, then, is to restrict the 
scope of the Pareto condition [see Levi (1990)], but that is a move we are not 
willing to make. 

Corollary 3.4 prompts a serious question, we think, about the extent to 
which our proof technique for extending a partially ordered preference is 
useful for the representation theorems of this essay. To wit, since the set T 
of agreeing "linear" utilities in Theorem 5 is convex, why bother with the 
elaborate inductive argument only to arrive a t  what "separating hyperplanes" 
yields directly? The answer has two parts. 

As a first reason, Theorem 5 applies without additional topological as- 
sumptions about the relation + . Specifically, to the best of our knowledge, all 
the existing theorems that appeal to "separating hyperplanes" in order to 
provide necessary and sufficient conditions for representing a partially or- 
dered strict preference relation + by a convex set of "linear" utilities or by a 
convex set of probabilities, make assumptions regarding the boundaries of 
+ . Otherwise, for results that are based on a partially ordered weak prefer- 
ence relation 5 , whether preference a t  the boundary of T is strict or not, is 
not determined by such an approach. 

For an illustration of the former approach, Walley [(1991), Section 3.7.8, 
condition R8] requires that strict preference over gambles be "open" so that 
so-called strong separation leads to a representation in terms of sets of 
probabilities "closed" with respect to infimums. By avoiding "separating 
hyperplanes," we are able to sidestep this artifice. Surfaces of the set T need 
not have a simple topological character. 

For an illustration of the latter approach, Giron and Rios (1980) use a 
reflexive, partial (quasi-Bayesian) preference relation, denoted in their paper 
by 5 , which they represent with a closed, convex set of probabilities. They 
note [Giron and Rios (1980), footnote 3, page 201 that their method generates 
the same "quasi-Bayesian preorder" whether the so-called uncertainty set of 
probabilities (which they denote by K*)or its closure (K*)is used. To explain 
our assertion about the loss of information a t  the boundary of T ,  consider 
the following example involving preferences over acts using only two prizes, 
W and B. 

EXAMPLE6.1. Define act HE as HE(s)= B for s E E, and HE(s) = W 
otherwise. 

Case 1. The agent reports the strict preferences XB + (1 - x)W + HE for 
0 < x I0.6 and noncomparability XB + (1- x)W - HE for 0.6 < x I 1. 

Case 2. The agent reports the strict preferences xB + (1- x)W + HE for 
0 < x < 0.6 and noncomparability xB + (1 - x)W - HE for 0.6 Ix I 1. 

The (closed) target set of utilities for HE is the same in both cases: 
Y(HE) = [0.6,1]. However, in the first case the lower bound is not a "candi- 
date utility" (Definition 24), whereas in the second case it is. Therefore, by 
our construction, the representation for the agent's strict preferences in Case 
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1is the set 9= {P:  0.6 < P ( E )  4 1)and in the second case it is the closed 
set 3 = {P:0.6 4 P ( E )  I 1). 

By contrast, the Giron and Rios (1980) theory uses only a weak preference 
relation, 5 .  In both Cases 1and 2 their theory entails 

xB + ( 1  - x ) W d  HE for0 < x  4 0.6 and 

[The weak preferences of Case 2 result from applying Giron and Rios' Axiom 
A5 (continuity). In particular, that axiom yields the conclusion 0.6B + 
0.4W 5 HE from the premise XB+ (1- x)W 5 HE (0 < x < 0.6).] In their 
notation, the weak-preference relation does not distinguish between these 
two cases: where K* = {p :  0.6 < p (E)  I 1)) and K*= {p:  0.6 4 p(E)  4 I}, 
though our strict-preference does. 

As a second reason for bypassing proof techniques using "separating 
hyperplanes," though the set 7 is convex, not so for the set of "linear" 
utilities that admit a decomposition as subjective (almost) state-independent 
utilities. We do not see how to show the existence of the set of agreeing 
probability/(almost) state-independent utility pairs, corresponding to Theo-
rem 6, without exploring details about the surface of 7.In light of Theorem 
5, we have no right to assume those surfaces are closed. By contrast, when 7 
has sufficiently many closed faces, Lemma 4.3 gives a representation of + in 
terms of sets of probability/state-independent utility pairs. Thus, we feel 
justified in our choice of an "inductive" proof technique by the increased 
content to the theorems reached. 

APPENDIX 

Proofs of selected results. 

A. Results from Section 2. Corollaries 2.1, 2.2 and 2.3 have elementary 
proofs. 

PROOFOF COROLLARY2.4. From left to right, argue indirectly and apply 
Corollary 2.3 for a contradiction. In the other direction, assume that xHl 
+ ( l  - x )H  = xH, + (1 - x)H for some 12 x > 0 and some lottery H. Also, 
assume yHl + (1- y)H3 < (+)H4,  with 12 y > 0. Then by HL Axiom 2, 
V (1 L z > 01, z(yHl + (1  - y)H3) + (1- z ) H  + (>)zH4 + (1 - z)H. Let 
z x/(x + y - xy) > 0 and then 1> z (unless x = y = 1, in which case we are 
done). Last, define the term w = y/(x + y - xy) and we know that 0 < w < 1. 
Thus, we have w(xH, + (1 - x)H)  + (1 - w)H3 + (+)zH4 + (1 - z)H. Since 
(xH, + (1 - x)H) = (xH, + (1 - x)H), by Corollary 2.3 also we have 
w(xH, + ( l  - x)H)  + (1- w)H3 < (+)zH4 + (1 - z)H. Again by HL Axiom 
2, we may cancel the common factor (1 - z ) H  from both sides, to yield 
yH, + (1 - y)H3 + (+)H4.By Corollary 2.3, H, = H,. 
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PROOFOF COROLLARY2.5. Assume the premises and, by Corollary 2.3, 
show using HL Axiom 3 that V (0 < x 5 1, Ha, H,) whenever xM + (1 -
x)H, < (+)H,,  then XH+ (1- x)Ha + (> )Hb .  

Lemma 2.1 has a straightforward proof. 

PROOFOF LEMMA2.2. Without loss of generality, as L is discrete, write L 
as {P(r,): P(r , )  2 P(rj)for i 5 j}. Let 

and define the simple lotteries L, = {(l/x,)P(r,): i = 1 , ... ,n}. Then {HL} 
*HL.If for each r, E supp(L), r, + r ,  then by HL Axioms 1and 2, HL.;+'r 
(or, if r + r,, then r < HL,,).Thus, we have the desired conclusion: not 
( r  < HL)[or, alternatively, not (HL< r)]. For if not, by HL Axiom 3 and 
transitivity of < , (HL+ HL). 

PROOFOF COROLLARY2.6. On the contrary, if a utility V for acts is 
unbounded, then there are acts with infinite utility. 

Just  consider the discrete horse lottery H,, where H,(sj) = C,(2-i)P,, for 
a sequence of acts H, such that V(Hi) 2 2, ( i  = 1 , ...). Then, by the expected 
utility property, V(HJ = a.The existence of such acts leads to a contradic-
tion with the first two axioms, just as in the St. Petersburg paradox. Assume 
for convenience that H, < H,. By axiom HL Axiom 2, 0.5H1 + 0.5Hx + 0.5H, 
+ 0.5H,. However, V(0.5Hl + 0.5Hx) = V(0.5H2 + 0.5Hx) = V(Hx) = x, 

which, if V agrees with < , entails the contrary result that 0.5H1 + 0.5H, -
0.5H, + 0.5H,. 

PROOFOF LEMMA2.3. The proof is indirect. Most of the work is done by 
HL Axiom 3. We present the argument for the case in which + fails to be 
bounded above, using Axiom 3(b). By similar reasoning using Axiom 3(a) 
instead, the result obtains when < fails to be bounded below. 

Let {H,: n = 1 , .. . } be an increasing chain and suppose it is not bounded 
above, that is, lim,,, sup{x: (H, + XH,+ (1- x)H,)} = 1. Choose a subse-
quence, also denoted by {H,}, so that x, 28 1- l / n  and so that H, + x, H, + 
(1 - x,)H,. However, {x,Hl + (1- x,)H,} -HI. Trivially, the constant se-
quence {H,}*H,. Also, H, + H, by assumption. Then by HL Axiom 3(b), 
Ifl < H,, contradicting HL Axiom 1. 

PROOFOF COROLLARY2.7. If not, then there is an unbounded increasing 
(31 decreasing) +,-chain of preferences amongst the set of rewards R. By 
Lemma 2.3, +, does not satisfy both Axioms 1and 3. 

PROOFOF COROLLARY2.8. Let H, and H, be a pair of acts which are 
"called-off' in case n does not obtain, that is, V ( s  @ n), Hl(s) = H,(s). 
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(Properties of "called-off' acts are examined in Section 5.) Define k pairs of 
acts "called-off' in case sj, obtains, H,, and H,, (i = 1 , ...,k) as follows: Let 1 
be a lottery. V ( s  E s,,), [ H,$s) = H,(s) and H,i(s) = H,(s)]; V ( s  E n & s E 
s,,), [H,$s) = H,$s) = Ll; V ( s  P n), [H,{s) = H,{s) = H,(s) = H,(s)l. By 
assumption, each sjLE n is essentially null. Therefore, by iteration of Corol-
lary 2.4 (and transitivity of = Hi = Ha, where Hi = Cf, ,(l/k)H, and 
Ha = q=,( l /k)H, , .  However, Hi = (l /k)H, + (k - l / k ) H  and, likdwise, 
Ha = (l /k)H, + (k - l / k )H  for act H definedby V(s  E n ) ,  [H(s )  = L] and 
V (S P n) [H(s )  = H,(s) = H,(s)]. Then, by Corollary 2.4, the desired result 
obtains, H, = H,, 

B. Proof of Theorem 2. The extension from < to < ' is given in steps, by 
adding the two new rewards one at  a time. First, extend < to a partial order 
< * on H R  where W is left - *-incomparablewith elements of HR.The 
definition of < * is introduced by a lemma that shows the extension is 
minimal. 

LEMMA2.4. Suppose H,, H,, Hi and Ha E H R  and are related as  follows: 
H (s . )  = x .L .+ (1- xj)Ll, and H,(sj) = xjLJ + (1- xj)L,, j, while H;(s,) = 

1 J J J 
xjEj + ((1- xj)Ll, and Ha(sj) = xjEj + (1 - xJ)L2,,. Then H, < H, iff Hi < 
Ha. 

PROOF. The lemma is immediate by HL Axiom 2 and the identity 0.5H1 + 
0.5H; = 0.5H, + 0.5H;. 

Now, let Hi E H R.(,) be written Hi(sj) = xi,jW + (1- xi,j)Li,j, where 

L,, E H R  is well defined if and only if xi, < 1.Choose a reward r E R and 
let H,# E H R  be the act that results by substituting r for W in Hi. Thus, 
H:(sj) = xi,jr + (1- xi,j)Li,j. Lemma 2.4 shows this choice is arbitrary and, 
if + * is to extend < , it  must satisfy the following: 

DEFINITION15 (< *). Given H,, H, E H R  IW,,as expressed above, define 
the preference + * from < by H, < * H, iff x,', = x,, (for all sj  P n)  and 
Hf' + Hf. 

LEMMA2.5. The order + * is identical with + on H R  and satisfies HL 
Axioms 1-3. 

PROOF. If H,, H, E H R ,  then x , , ~= x,, = 0, H, = Hf', H, = H,# and 
thus H, < * H, iff H, + H,. Next, we show that + * satisfies the axioms. 
Consider all Hi E H R  (,). 

HL Axiom 1(irreflexivity). If, on the contrary, for some H,, H, + * H,, then 
Hf < H f ,  contradicting the irreflexivity of < . 

Transitivity holds because if H, < * H, and H, < * H,, then the corre-
sponding three H: acts ( i  = 1,2,3)can be written xj(r) + (1 - x,)L,, j. Since 
+ is transitive, Hf' + Hf;  thus, H, + * H,. 
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HL Axiom 2 (independence). V (0 < y _< I), V H E H, ,{,) H, + * Hz iff 
-

XI, J - '2, j and H,#+ H,# iff yx,, + (1- y)x,, = yx, + (1- y)x,, and 
+ ( 1  - y ) ~ , #< y ~ , #+ ( 1- y ) ~ , #  iff yH, + ( I , - y ) H ,  + *  yH, + 

(1- y)H3. 
HL Axiom 3. Let {H,, < * H,,} be an  infinite sequence of + *-preferences 

where {H,,}-H,, {H,,} -Hz and assume H, + * H,. Thus HT, + H L ,  
where {H;} -Hf and {H&}* H,#. Since H, + *H,, then H,#< H,#.By 
applying HL Axiom 3 to these +-preferences, we obtain HT < H,#. We 
derive x,, = x,, from the equalities x;, = xg, and x,, = x,, j .  Therefore, 
H, + * H,. The argument for HL Axiom 3(b) is similar. 

Lemma 2.5 shows, also, that  if < ' is defined on R U {W},extends + and 
satisfies the axioms, then i t  extends < *. That is, < * is a minimal extension 
of < to the domain R u {W}.Next, we extend < * to a preference <, in 
which W serves as a least preferred (worst) act. (The reader is alerted to the 
fact that, though the partial order <, makes W a least preferred act with 
respect to elements of H R ,  it does not guarantee that W is, state by state, a 
least favorable reward. This feature is addressed in Section 4.1, where we 
consider state-dependent utilities for partial orders.) 

DEFINITION16 (iw1. V (HI,  Hz E H R,,(,)), H1 H2 iff either (a) 
H, +*HZ or (b) 3 {H, E HRJ, 3 {H1,} * HI,  3 {Hz,} -Hz and 3 (q,: 
0.5 4 q, < 1) with lim,,,{q,l = q, q < 1, such that V n, q,Hl, + (1 -
q,)H, + * ( o r  =*)q,H,,  + ( 1  -q,)W. 

LEMMA2.6. (1) The partial order +, agrees with + on HR.  
(2) W bounds + * from below; that is, V (H E HR) ,W +, H. 
(3) +, satisfies HL Axioms 1-3. 

PROOF. (1) Let H, and H, belong to H R .  If H, + H,, then by Lemma 
2.4, H, < * H,, and by clause (a) in Definition 16, H, +, H,. For the 
converse, if H, <, H,, then it is not by clause (b), since V ( H ,  E H R )and for 
all sufficiently large n ,  as 1> q 2 0.5, q, H,, + (1 - q,)H, - * (and * *) 
q,H,, + (1 - q,)W. Hence, it must be that clause (a) obtains. So, H, < * H, 
and H, + H,. 

(2) For each H E H R ,  recall that 0.5H + 0.5W = * 0.5W + 0.5H. Then, in 
Definition 16(b), set H, = {H,,} = W, H, = {H,,} = H ,  H, = H and q, = 0.5. 
Thus, W <, H. 

(3) We verify the axioms individually: 
HL Axiom 1(irreflexivity). On the contrary, suppose that H, <, H,. There 

are two cases to consider. If this <,-relation results by Definition 16(a), then 
H, + *  H,, contradicting Lemma 2.4. If we hypothesize that H, +, H, 
results by Definitions 16(b), then we derive a contradiction as follows. Let 
Hi, = q,H,, + (1- q,)H, and Ha, = q,H,, + (1 - qn)W.A necessary con-
dition for the relation Hi, + * (or = *)Ha, to obtain is that  xHin= xHl,, 
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(except on essentially null states). However, as both {H,,} * H, and {H,,} * 
-H,, while lim,,, q, = q < 1, this is impossible. That is, lim,,, x,;,, -

limn,,q,xHl,, = 0, while X,;,~ 2 (1 - q,); hence, for all sufficiently large n, 
x,;,, < XH;, 

HL Axiom 1(transitivity). Suppose both H, +, H, and H, +, H, obtain. 
There are four cases to consider depending upon which clause in Definition 
16 is used for each <,-preference. The argument is most complicated when 
Definition 16(b) is used twice; hence, we give the details for this case only. 
Thus, assume there are two sequences of *-relations: 

(B1) Hi, + * (or = *) Hh, and Hi, + * (or = *)HA,, 

where 

and where {HI,}* H I ,  {Hz,}* H z ,  * H z ,  {H3,}* H3 and 
lim,,,{q,} = q, lim,,,{qL} = q ' ,  with 0.5 5 q, q '  < 1.Then V (0 < r, < I), 
r,H;, + (1- r,)Hi, < * (or = *) ?-,Ha, + (1 - r,)Hh,. This is an  + *-
preference, unless both equations of (Bl) are = *-indifference~.Choose r, so 
that  r,q, = (1 - r,)qL. Since {H,,} and {I?,,} both converge to H,, by HL 
Axiom 2, cancel the common acts in Ha, and Hi, (also common with acts in 
Hz). Then apply clause Definition 16(b) to obtain H, <, H,. 

"(,,, H,EHVHL Axiom 2 (independence). V 0 < x 5 1: 
Case (a). H, + * H, iff xHl + (1 - x ) H  + * xH, + (1 - x ) H  iff xH, + 

(1 - x ) H  +, xH, + (1 - x)H. 
Case (b)-(i). If q,Hl, + (1 - q,)H, + * (or = *) q,H,, + (1 - q,)W, then 

r,[q,H,, + (1 - q,)H,l + (1- r,)H < * (or = * I  r,[q,H,, + (1 - q,)Wl + 
(1 - r,)H. Write r, = x/(q, + (1- q , ) ~ ) .  Then XH,+ (1 - x)H +, xH, + 
(1 - x ) H  by Definition 16(b). 

Case (b)-(ii). Suppose xH, + (1 - x ) H  +, xH, + (1 - x)H. Let {H,,}* 
XH,+ (1  - x ) H  and {H,,} * xH, + (1 - x)H. Assume q,H,, + (1 - q,)H, 
+ * (or = *) q, H,, + (1- q,)W. Apply HL Axiom 2 to cancel acts in H,, and 
H,, common with H. Regroup the remainders to yield a < *-relation of the 
desired form for Definition 16(b): qLH,, + (1- qL)H, < * (or = *) qLH,, + 
(1 - qL)W, where {HI,}* H, and {H,;} * H,. (A simple calculation shows 
that  limn ,,{q;} = q '  2 0.5.) Thus Hl < * H,. 

Next, we give the details for HL Axiom 3(a) [Axiom 3(b) follows similarly.] 
HL Axiom 3(a) (Archimedes). Assume H, +, M, and M <, N, where 

{H,}* H and {M,} * M. We are to show that H <, N. Again, there are 
four cases to consider, depending upon how (infinitely many of) the first and 
the second +,-preferences arise through Definition 16. The argument is 
most complicated in case clause 16(b) is used throughout. 

That is, assume 3 { R,",, S ,  E HR},3 {HL 1, 3 {MAnL},3 {Mi} and 3 {NA} 
such that, V n, as m + x ,  {HL } * H, and{^^ } * M,, while as n -+ x ,  
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{Mi}* M and {Ni}* N. Also assume 3 {q,nL, s, 2 0.51, so V n, lim,,,{qnn*} 
= q, < 1and lim,,,{s,} = s < 1.By Definition 16, 

Since {H,} *H and {M,} * M, V n, 3 (m* = m(n)) so that, as n -+ a,both 
{HA,.}*H and {MA ,I -M. Moreover, we may choose (a subsequence of) 
these m* so that  = q, 0.5 a q < 1. Thus we have 

An application of the first two axioms to (B2) and (B3) yields 

(B4) x, [left side(B2)l + ( 1  - x,) [left side(B3)l 

+ * (or = *) x, [right side(B2)l + ( 1  - x,) [right side(B3)l. 

Let x, = s,/(s, + qnnLm).Then as both {MA ,} * M and {Mi}* M, we may 
cancel acts common to M on both sides of (B4) to yield z,Hi + (1 - z,)T, + * 
(or = *) z,NL + (1 - z,)W, where {H:} * H ,  (N;) *N, T, E HR and 
lim,,,{z,} = z = sq/(s + q - sq). Last, 0.5 5 z < 1 because 0.5 5 s , q  < 1. 
Therefore, by Definition 16(b), H +, N as required. 

Finally, Theorem 2 is concluded by repeating this construction in a dual-
ized form: extend the preference <, to < ' by introducing the act B and 
making it most preferred in H R  (W). 

C. Proof of Theorem 3. We show (by induction) how to extend < (= +, ) 
while preserving Axioms 2 and 3 over simple lotteries until the desired weak 
order is achieved. At stage i of the induction, the strategy is to identify a 
utility vi for act Hi EX,where ui is chosen (arbitrarily) from a (convex) set of 
target utilities for H ~ ,<(&).We create the partially ordered preference +i 
so that  a = i  viB + (1 - u,)W. 

Begin with a function 9-which provides a set of target "utilities" for all 
elements of H,. We use W and B as the 0 and 1 of our utility. Assume 
{H,}*H and H, E HR.For i = 1, by Definitions 17 and 18, vT(H) is the 
liminf of the quantities x, for which H, -:x,B + (1 - x,)W and v, , (HI  is 
the lim sup of the quantities x, for which x,B + (1 - x,)W -:H,. The two 
"utility" bounds, v , ( H )  and v*(H), 'do not depend upon which sequence 
{H,}-H is used. We show this for u ,(H).  The argument for u*(H) is the 
obvious dual. 

CLAIM1. Let {H,}* H and {HA}*H. Then u,(H) is the same for both 
sequences. 

PROOF.Suppose v,(H) = lim sup{x,: x, B + (1 - x,)W < H,}. Then we 
show that u , (H)  Ilim sup{x,: x, B + (1 - x,)W < HA}.This suffices, since 
by symmetry with {HA},when ul,(H) = lim sup{x,: x,B + (1 - x,)W -:HA}, 
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then v',(H) I lim sup{x,: x,B + (1- x,)W + H,}; hence, v,(H) = v',(H). 
Since both sequences {H,}and {HA}converge to act H ,  we can write each pair 
(H,, HA) as the pair (y,K, + (1 - y,)M,, y,K, + (1 - y,)MA), where 
lim,,, y, = 1. Assume all but finitely many y, < 1; else we are finished. 
Acts M, and MA belong to H R  because H, and HA do. Of course, neither of 
the two sequences of acts {M,} and {MA}need be convergent, but {K,} -H. 
For each n, define the act N, = y,K, + (1- y,)W. Clearly, IN,} -H. It  
follows from the preference W < M, that N, < H, and from the preference 
W + MA that N, + HA. By hypothesis, there exists a sequence {x,} such that 
x,B + (1 - x,)W + H, and lim,,,{x,} = v,(H). Let a, be the maximum of 
0 and (x, + y, - 1). Since x,B + (1 - x,)W < y,K, + (1 - y,)B, then a,B
+ (1- a,)W < ynK, + (1- yn)W = N,. Transitivity of < yields a n B  + 
(1- a,)W +HA. However, aslim,,,{y,} = 1andlim,,,{x,) = u,(H), then 
lim,,,{a,}=v,(H). Thus, v , ( H ) ~ l i m s u p { x , :  x ,B+( l -x , )W+HA}.  

Observe that if v *(H,) < u ,(H, ), then H, < H,, by Axiom 3 and the fact 
that W < B. However, these "utility" bounds are merely sufficient, not neces-
sary, for the < -preference H, < H,. 

PROOFOF LEMMA3.1. Note that XB+ (1- x)W < yB + (1- y)W when-
ever x < y. 

(i) Suppose, on the contrary, that v*(H) < u ,(H).  Then by Corollary 2.5 
applied twice over, v*(H)B + (1 - v*(H))W .= H .= v , (H)B + (1 -
v,(H))W. Since v*(H)< u,(H), also v*(H)B + (1 - v*(H))W + v,(H)B + 
(1 - V ,  (H))W, contradicting the = -relation between them, as just derived. 

(ii) This is immediate, by similar reasoning. 

Next, we show that + may be extended to +, , a strict partial order 
satisfying HL Axioms 2 and 3, in which H .=, vHB + (1- uH)W and where 
the utility u, may be any value in the interior of the closed target set F ( H ) .  
We resolve when an endpoint of the (closed) target set may be a utility 
afterward. 

DEFINITION20. For H E H R ,  let u E in tY(H).  [When Y ( H )  has no 
interior, when v ,  (HI = u*(H) = v, then by Lemma 3.l(ii), H = uB + (1 -
v)W. Thus it is appropriate that Definition 20 creates no extension of < . 
Then act H already has its "utility" fixed by < .I Define +, by 

( H  + H )  iff 3 ( 0  < x <  1) 3 ( G , G 1 ) ,  

where G and G' are symmetric mixtures of H and vB + (1 - u)W. 

Specifically, 3 y with G = yH + (1- y)[vB + (1 - u)Wl and G' = y[uB + 
(1- v)W] + (1 - y)H. 
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LEMMA3.2. +, extends < 

PROOF. Assume H, + H,. Choose y = 0.5 in Definition 20, so G = G'. By 
Axiom 2, xHl + (1 - x)G < xH, + (1 - x)G', so that  ( H I  +, H,). 

LEMMA3.3. >, satisfies HL Axioms 1-3. 

PROOF. We establish Axioms 1-3 separately. 
HL Axiom 1(irreflexiuity). Assume not (H, +, HI). Then xHl + (1 - x)G 

< xH, + (1 - x)G', which by Axiom 2 yields G < G'. By Definition 20 and 
another application of Axiom 2, either H + uB + (1 - u)W or else uB + 
(1 - u)W 4H. Either contradicts the relation H - vB + (1 - v)W. That fol-
lows from the assumption u ,  < u < u*. 

HL Axiom 1(transitivity). Assume ( H I  <, H,) and (H, +, H,). Then we 
have 

x H l + ( l - x ) G < x H , + ( l - x ) G '  and 

wH, + ( 1  - w) J + wH, + ( 1  - W )J ' ,  

where both pairs (G, G') and ( J ,  J ' )  satisfy Definition 20. These equations 
may be combined to create V z,  z(xH1 + (1 - x)G) + (1 - z)(wH, + 
(1 - w ) J )  + z(xH, + (1 - x)G') + (1 - z)(wH3 + (1 - w)J') .  Choose z / ( l  
- z)  = W/X. By HL Axiom 2, we may cancel the common term zxH, [ = (1 -
z)wH,] from both sides and recombine the pairs (G, J )  and (G', J ' )  to yield 
uH, + (1 - u)K + uH, + (1 - u)K'. Thus, H, +, H,. 

HL Axiom 2. Argue that  H, +, H, iff yHl + (1 - y)G + yH, + (1 - y)Gt 
iff V (0 < z < I), z(yH, + (1 - y)G) + (1 - z)H, + z(yH, + (1 - y)G') + 
(1  - z)H, iff (3 w) w(xHl + (1 - x)H,) + (1 - w)G + w(xH2 + (1 - x)H,)
+ (1 - w)Gt (choose w = ZY/X)iff xH1 + (1 - x)H, +, xH2 + (1 - x)H,. 

HL Axiom 3(a). Assume V n (M, +, N,), and ( N  +, 0 ) .  Then show 
( M  +, 0 ) .  

1. Thus (a) (x,M, + (1 - x,)G,) + (x,N, + (1 - x,)Gk) and also (b) (yN + 
(1 - y)J) + (YO+ (1 - y)Jt). 

As Definition 20 applies to the pairs (G,, GL),(J, J ' ) ,  we may cancel (by 
Axiom 2) common terms to create: 

2. Either (a) u,M, + (1 - u,)H + ukN, + (1 - u,)(uB + (1 - u)W) or (b) 
u,M, + ( 1  - u , ) ( v B + ( l  - u ) W ) +  u,N, + ( 1  -u , )H.  

3. Also, in addition, either (a) W N+ (1 - w)H + WO + (1 - WXUB+ 
(1 - u)W) or (b) W N+ (1 - w)(uB + (1 - u)W) + WO+ (1 - w)H, where 
u, 2 x, and w 2 y. 

At least one of 2(a) or 2(b) occurs infinitely often. Without loss of generality, 
assume 2(a) does. Since u,(H) < u < u*(H), then liminflu,} = u > 0, in this 
infinite subsequence. [Only here do we use the fact that  u is a n  interior point 
of Y ( H ) .  See Lemma 3.5 for additional remarks.] 
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Thus, we are justified in considering a convergent sequence of the form 
2(a), also indexed by n, with coefficients converging to u > 0. We argue by 
cases: Assume 3(a) obtains. Using Axiom 2, we mix in the act H to both sides 
of 2(a) and the act (vB + (1 - u)W) to both sides of 3(a), yielding: 

Choose xu = zw = q # 0, (1 - x) = z(l  - w). Note all of the following occur: 
the 1.h.s. of 4(a) converges to the act (qM + (1- q)H); the r.h.s. of 4(b) is the 
act (qO + (1 - q)(uB + (1 - u)W)); the r.h.s. of 4(a) converges to the 1.h.s. 
of 4(b). Then by HL Axiom 3(a), (qM + (1 - q)H) < (qO + (1 - q)(vB + 
(1- v)W)), so by Definition 20, M <, 0. 

In case 3(b) obtains, instead, we modify this argument by mixing the term 
(uB + (1 - u)W) into 2(a) in case u < w or into 3(b) in case w < u, so that 
(as above) the r.h.s. of 4(a) converges to the 1.h.s.of 4(b) and so forth. 

HL Axiom 3(b). This is verified just as HL Axiom 3(a) is. 
Thus, +, satisfies the axioms. 

To complete our discussion of Y(H), we explain when <, may be created 
using an endpoint of the target set. To motivate our analysis, consider when a 
partial order < precludes an extension by a particular new preference or 
indifference. 

DEFINITION21. Say that a preference for act Ha over act H, is precluded 
by the partial order < ,denoted as 7 ( H b  + Ha),if there exist two convergent 
sequences of acts {Ha,,,}=, Ha and {H,,,} * H,, where ('d n) Ha,,,< H,,,. 
[Note: Ha = Hb or Ha + Hb implies the condition l ( H b  < Ha).] 

DEFINITION22. Say that indifference between acts Ha and H, is pre-
cluded by the partial order < , denoted as l ( H b  = Ha), if assuming the 
relation (Ha - H,), the three axioms and the preferences < all yield a 
preference precluded by + . 

EXAMPLE3.2. We illustrate 7(H, = Ha). Suppose + satisfies the axioms 
and the following obtain. Let Ha - H,.,However, there exist two convergent 
sequences of acts {M,,}=, M and {N,} * N and coefficients {x,: x,, > 0, 
lim,,, x,, = 01, where x,M, + (1 - x,)Ha + x,N, + (1 - x,)Hb However, 
for some y > 0, yN + (1 - y ) H a  + yM + (1 - y)H, .  Thus,  
(Ha = H,) entails MI, < N, and N < M. By Axiom 3, then M < M, which is a 
+ -precluded preference since M = M obtains whenever < satisfies the 
axioms. 

[We sketch a model for these < -preferences. Let Ha = u ,  B + (1 - u ,  )W 
and Hb = H. Suppose W is a set of utilities {Vd:1> d > 0; V,(H) = u ,  + d 
and Vd(M) - Vd(N) = Consider +,, whenY(H) = [u,,u*l yet Ha <, 
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H,. Let + be as +, except that Ha - Hb is forced. Vd(xM + (1 - x)u, ) r 
Vd(xN + (1- x)H) entails that x/(l  - x) 5 Since d assumes each 
value in (0.1), x = 0 is a necessary condition for the preferences of Example 
3.2.1 

CLAIM2. If both l(Ha + H,) and l(Hb + Ha), then Ha = H,. 

PROOF.When l ( H a  4 Hb) and 1 ( H b+ Ha), then there exist pairs of 
convergent acts {Ha,,I, {Hi,,I =. Ha and { H,, ,I, {HA,,I =. H,, where (V n) 
Ha,, + H,, ,and HL,a + Hi,,. Then by Corollary 2.5, Ha = Hb. 

Example 3.2 illustrates that our axioms are not strong enough to ensure 
the preference Ha + H, when, for example 1(Hb -: Ha) and 1(Ha= Hb).It 
so happens that when both the conditions l ( H b  + Ha) and l ( H a  = Hb) 
obtain and these two acts do not involve the distinguished rewards W and B, 
then each extension + * of + which fixes "utilities" for Ha and H, (and 
where + * arises by iteration of Definition 20) has the desired relation Ha + * 
H,. Our specific problem, however, is with the case when one of these two 
acts is a utility endpoint of the (closed) target set Y(H),  for example, let 
Ha = u ,  B + (1 - u ,)W and H, = H, as in the model for the 4 -preferences 
sketched in Example 3.2. We require an extra consideration, then, to de-
termine whether, though v ,B + (1 - u ,  )W - H,  a combination of + -
preferences arises which prohibits an extension +H of + that assigns the 
"utility" v ,  for H. 

Our solution is to show how to extend the partial order + to a partial 
order ++ that includes all the so-called missing preferences Ha + H,. 

DEFINITION23. Define ++ from + by Ha ++ Hb iff Ha 4 Hb or, both 
l ( H b  + Ha) and l ( H a  = H,). 

The next lemma establishes (very weak) conditions under which the 
++-closureof a partial order + satisfies all three axioms. In particular, it is 
not necessary that + satisfies HL Axiom 3. [The condition l ( H ,  + Ha) is 
well defined according to Definition 23 even though + is known only to 
satisfy HL Axioms 1and 2. Specifically, the indifference relation = is well 
defined and satisfies all those properties, e.g., Corollary 2.4, which depend on 
HL Axioms 1and 2 alone.] 

LEMMA3.4. The partial order ++ satisfies all three axioms provided + 
satisfies the first two axioms, HL Axioms 1and 2, and provided closure of + 
under all three axioms does not produce a + -precluded preference. 

PROOF. We verify the axioms separately. 
HL Axiom 1 (irreflexivity). Since H = H obtains and + yields no + -

precluded preference (under the three axioms), no act H satisfies H ++ H. 
That is, H = H is not + -precluded. 
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HL Axiom 1(transitivity). Assume Ha <+ Hband Hb<+ H,. Each of these 

<+-preferences may arise two ways, according to Definition 23. We examine a 


1general case: (H, + Ha), 7(He < H,), 7(Ha = H,) and l ( H ,  = H,). We 
show that (i) 7(H, < Ha) and (ii) 7(Ha= H,). 

(i) From the two assumptions l ( H b  < Ha) and 7 (Hc  + H,), we conclude 
that there exist convergent sequences {Ha,,}* Ha, {H,,,}and {HA,,}* H, 
and {He,,} * He, with (V n) Ha,,< H,,,and HL,,< H,,,. Thus, by Axioms 1 
and 2, 0.5Ha,, + 0.5Hi,, < 0.5Hb,, + 0.5Hc ,. Using HL Axiom 2 to cancel 
common terms in H,,, and HA,,, we obtain <-preferences of the form 
HA,,< Hi,,, where {HA,,} =, Ha and {Hi,,} =, He.Thus, (H, < Ha). 

(ii) Assume Ha = H,. Because Ha,,< Hb,,we may construct new conver- 
gent sequences {Hi,,}* He and {Hl,,}* H,, where Hi,,, < H:,,. 

This exercise is done as follows. From the indifference Ha = H, conclude 
(l/n)W + ([n - l l /n)H, < ( l /n )B + ([n - l ] /n)Ha.  Then 0.5Ha,, + 
0.5[(1/n)W + ([n - l]/n)H,l < 0.5Hb,, + 0.5[(l/n)B + ([n - l]/n)Ha]. Use 
Axiom 2 to cancel common terms involving act Ha. 

We already have assumed HA,,< H,,,. Then, since we are entitled to use 
HL Axiom 3 in determining the consequences of adopting Ha = He, by 
Corollary 2.5, from Ha = H, we derive Hb= H,. 7 ( H b  = He)means that 
adding the = -indifference H, = He yields a < -precluded preference. Thus, 
adding Ha = He to + yields the same < -precluded preference. Hence, 
7 ( H a  = H,). 

HL Axiom 2 (independence). This axiom is easy to verify, since + satisfies 
HL Axioms 1and 2. We illustrate the argument from right to left. Suppose 
xHa + (1 - x)H ++ xH, + (1- x)H. We are to show that (i) T(H, < Ha) 
and (ii) (Ha= H, 1.1 

(i) We know that both l ( x H b  + (1 - x )H  < xH, + (1 - x)H) and 
7(xHa + (1- x )H  = xHb + (1 - x)H). AS in previous cases, we may assume 
existence of convergent sequences {H,,,}* xHa + (1 - x)H)  and {Hz,,} 
=. xHb + (1- x)H), where HI,, < Hz,,. Use HL Axiom 2 to cancel common 
terms (involving act H )  in each pair HI, and Hz,,.The results are < -
preferences of the form Ha,, + Hb,, ,  with {Ha,,}A.Ha and {H,,,}* H,. 
Thus, l ( H ,  < H,). 

(ii) By ~ o r o l l a r ~  = Hb it follows that xHa +2.4, from the assumption Ha 
(1 - x)H = xHb + (1 - x)H, which yields a + -precluded preference as 
7 (xHa + (1 - x )H  = XH,+ (1 - x)H). 

HL Axiom 3(a). Assume M, <+ N; and N < +O, where {M,} =, M and 
IN,,}* N. We need to show that (a) ~ ( 0  0).< M) and (b) 7 ( M  = 

(a) Thus 7(N, < M,), (M, = N,), 7( 0  < N )  and ( N  = 0) .  As in 1 1 

previous cases, assume each of these <-precluded preferences arises from 
corresponding sequences of < -preferences. That is, for each n there is a pair 
of convergent sequences lim,, ,{M,, j} * M, and {N,, j} * N,, where M,, + 
N,,j. Also, there is a pair of convergent sequences IN;} * N and {On} * 0 ,  
where N; < O,,. Since {M,} * M and IN,} =) N, for each n we may choose a 
value j, so that lim,, ,,{MI,, j,,} * M and IN,, j,,} =, N. Of course, M,, j,, < N,, j,,. 
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Then, 0.5Mn,j,, + 0.5NA + 0.5Nn,j,, + 0.50,. Use HL Axiom 2 to cancel terms 
common to act N, yielding + -preferences sufficient for 7(0< M). 

(b) If we assume M - 0 ,  then (because M,, jn + N,, j,,) there are sequences 
(0;) =, 0 and {N;} -N, with 0; + N;. Since NA + On, using Axiom 3, by 
Corollary 2.5, then N = 0. However, l ( N  - 0 ) .  Hence, assuming M - 0 
entails some + -precluded preference. Therefore, l ( M  - 0 ) .  HL Axiom 3(b) 
is demonstrated in the identical fashion. 

In the next definition, based on Lemma 3.4, we indicate whether either 
endpoint of Y ( H )  is eligible as a utility for H when extending + to form 
+H.  

DEFINITION24. Say that u , ( H )  is a candidate utility for H if u , B  + 
(1 - u,)W -+ H. Likewise, u*(H) is a candidate utility for H if H -+ 

u *B + (1 - u*)W. 

We conclude our discussion of the extension <, for the special case when 
i t  is generated by a target set endpoint provided, of course, the endpoint is a 
candidate utility for H. The idea behind the extension, is that  as i t  stands, 
Definition 20 fails with u = v ,  or v = u *  only because the resulting partial 
order is incomplete with respect to Axiom 3. (See Lemma 3.5, below.) Then, in 
light of Lemma 3.4, the +-closure (using Definition 23) corrects the omis-
sions. (See Lemma 3.6.) 

When extending + with a candidate utility, v = v ,  or u = u*, that  is, 
using an endpoint of Y(H) ,  we define the extension +, in two steps, as 
follows: Analogous with Definition 20, let G and G' be symmetric mixtures of 
H and uB + (1 - v)W. 

DEFINITION25. Define H1 +, H, iff 3 (0 < x < 1) 3 (G, G'), xHl + 
(1- x)G + xH2 + (1 - x)G1,and let +, result by closing +, using Defini-
tion 23, that is, <, = <$ . 

LEMMA3.5. The partial order +, extends + and  satisfies axioms HL 
Axioms 1and 2. 

PROOF. Since u is a candidate utility, uB + (1 - v)W - H. Then, as 
Definition 25 duplicates Definition 20,'the proofs from Lemmas 3.2 and 3.3 
apply to show that  +, extends + and satisfies the first two axioms. 

LEMMA3.6. The partial order +; extends + and  satisfies all three 
axioms. 

PROOF. In light of Lemma 3.5, the result follows by Lemma 3.4 once we 
show that  +, may be closed under the axioms without generating a +,-
precluded preference. Note that +, extends < by some, but not necessarily 
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all, preferences entailed (by the three axioms) from the =-indifference 
H = uB + (1- u)W. Then, since u is a candidate utility, closing +, under 
the three axioms does not lead to a + -precluded preference. We claim, next, 
that it does not lead to a +,-precluded preference either. Suppose, on the 
contrary, it does. Suppose, for example, closing +, with the axioms results 
in a relation H, +, Ha, where also T(H, +, Ha). The former means that 
adding H = vB + (1- u)W to the set of +-preferences entails (by the 
axioms) that H, + Ha. The latter requires that, for two convergent sequences 
{Ha,,}and {H,,,}, (Ha,, +, H,,.). Thus, adding H = vB + (1- u)W to the 
set of <-preferences entails (by the axioms) that (Ha ,+ H, ,). By HL 
Axiom 3, these lead to a + -precluded preference (Hb + H,). ~ h e iu is not a 
candidate utility for H with respect to + , a contradiction. 

Thus, with Definition 20, we have indicated how to extend + to +,, 
where act H is assigned a utility u from the interior of its target set 9 ( H ) ,  
and with Definition 25, how to extend to +, using a candidate utility 
endpoint. 

We interject two simple, but useful results about =,-indifferences The 
first confirms that the extension +, preserves = -indifferences The second 
shows that the extension +, makes act H =,-indifferent with its assigned 
utility u .  

LEMMA3.7. I f M  = N, then M =, N. 

PROOF.Suppose M = N and that XM+ (1 - x)H3 +, H4. We are to 
show that XN+ (1- x)H3 +, H4. By Definition 23, [y(xM + (1 - x)H3) + 
(1 - y)G] + [ yH4 + (1 - y)Gt]. After rearranging terms, by Corollary 23, 
[y(xN + (1 - x)H3) + (1 - y)G] + [yH4 + (1 - y)Gt], SO that XN + 
(1 - x)H3 +, H4. 

PROOF.Since W + B, we have the following: 

( l /n )W + [ ( n  - l ) / n ]  [ 0 . 5 ~+ 0.5(uB + ( 1  - u)W)] 

+ ( l / n ) B  + [ ( n  - l ) /n ]  [ 0 . 5 ~+ 0.5(uB + ( 1  - v ) ~ ) ] .  

This equation may be written as x,H, + (1 - x,)(uB + (1 - u)W) + 
x,M, + (1 - x,)H, where {x,} -+ 0.5, {H,} - H and {M,} - (vB + 
(1 - v)W 1. By Definition 20, H, +, M,. Similarly, it may be written x, MA + 
(1 - x,)(H) + x,HA + (1- x,)(uB + (1- u)W), where {x,} -t 0.5, {HA}=.H 
and {MA}* (uB + (1 - v)W). By Definition 20, MA +, HA. Then, by Corol-
lary 2.5, H =, uB + (1 - u)W. 

We iterate Definition 20 (or Definition 25) in a denumerable sequence of 
extensions of + . 
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DEFINITION26. Define the set 2={H:: H:(sj) = r l  if j # k ,  and 
H/(s,) = ri}. Let r, denote the constant act that yields reward r, in each 
state, so that r, EZ 

LEMMA3.9. 2? is countable and finite if R is finite. 

The proof is obvious. 
[2?remains countable even when 7i is a denumerable partition. Then i t  

follows from HL Axiom 3 that personal probabilities over .rr are a-additive. 
That is, HL Axiom 3 entails "continuity": limn,, p{nEn}= p{limn,, En}. 
In the light of Fishburn's (1979), page 139, result Theorem 10.5, we conjec-
ture that  our central theorems, e.g., Theorems 3 and 6, carry over to count-
ably infinite partitions. However, this is not evident, e.g., our proof of Claim 1 
(for Theorem 3) does not apply when 7i is infinite. Our use of finite partitions 
avoids mandating a-additivity of personal probability.] 

Hereafter, we enumerate 2? with a single subscript i. At stage i of the 
induction, + i  is obtained by choosing a target utility vi  for act Hi €2, 
denoted v(H~)= ui.  Here ui Eq ( H i )  and q ( . )  identifies sets of target utili-
ties, based on + i p l  . By Lemma 3.7, extensions preserve utilities already 
assigned, so that all utilities fixed by stage i are well defined over stages 
j 2 i. Next, we show that each simple act has its "utility" V determined by a 
finite subset of Z 

LEMMA3.10. IfH E H, is a simple act, then there is a (finite) stage +, 
such that Fm(H)is a unit set, that is, by stage +,, H is assigned a precise 
utility V(H).  

PROOF. First we verify that  V has the expected utility property over 
elements of X.Consider H,, H,EZWithout loss of generality, let b = 

max{a, b}. Both H, and Hb have their respective utilities by stage +, . That 
is, Ha -,u,B + (1- v,)W and H,zbubB + (1- ub)W. By Corollary 2.4, 
XH, + (1 - X)Hb Z b  x(u,B + (1 - ua)W) + (1 - X)(UbB + (1 - Ub)W). 
Hence, V(XH, + (1 - x ) ~ , )= XV(&) + (1 - x)v(H,). 

Next, write H(sj) = C:I,P,(~~).Define the act H,'(s) = H(s) if s = sj; 
otherwise H1(s)= r,. Since H is simple, each Hj' is a finite combination 
of Hi EZSpecifically, Hi = c;L,P,(R;), where H!(s) = r i  if s = s j  and 
H/(s) = r ,  otherwise. Observe that ( l / n ) H  + ( n  - l /n)r ,  = C(l/n)H,'. 
Thus the utility V(H) is determined once V(r,) and the n values V(Hj') are 
fixed, all of which occurs after finitely many elements of 2?are assigned their 
utilities. 

We create a weak order 5 ,  from the partial orders +, (i = 1 , ...) using 
the fact that each H E HR is a limit point of simple horse lotteries. For 
H E HR consider a sequence {HI,}=, H ,  where HI, is a simple act. Let 
V(H )  = lim,, ,,V(HI,).Then: 
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LEMMA3.11. V(H) is well defined. 

PROOF. We show that if {H,}=. H ,  then lim,,, V(H,) exists and is 
unique. Assume {H,}=, H and {HA}=. H ,  where all these acts belong to HR.  
Without loss of generality, since the simple acts form a dense subset of H R  
under the topology of pointwise convergence, suppose that each of H,, HA is 
simple. Then write H, as y,K, + (1 - yn)Mnand HA as y,K, + (1 - y,)MA, 
where limn,, y, = 1 and each of K,, M, and MA is a simple act in 
HR.  By Lemma 3.10, V(H,) - V(HA) = (1 - y,)[V(M,) - V(MA)]. Since 
limn,, y, = 1and V is in the unit interval [O, 11,limn,,V(H,) - V(HA) = 0. 

The next lemma establishes that V has the expected utility property for all 
H E HR. 

LEMMA3.12. I f  H,,Hb E H R ,  then V(xH, + (1-x)H,) =xV(H,) + 
(1- x)V(Hb). 

PROOF. Consider two sequences {Ha,,} =, Ha and {H,,,} =, Ha, where 
each of Ha,,and H,, ,is simple and belongs to HR.Then, for each n,  the act 
x(H,,,) + (1- x)H,,, is simple and belongs to HR.  It  is evident that 
{x(H,,,)f(l-~)H~,~}=,xH~+(l-x)H~.By Lemma 3.10, V(xHa,,+ 
(1- x)Hb ,) = xV(H,,,) + (1 - x)V(H, ,I. Then by Lemma 3.11, V(xH, + 
(1- x ) H , ~= xV(H,) + (1- x)V(H,). d 

Last, define the weak order 5, for H E H R  using the utilities fixed by V: 

DEFINITION27. (HI 5, H,) iff V(Hl) I V(H,). 

We complete the proof of Theorem 3: 
(i) That 5 ,  is a weak order over elements of H R  follows simply by noting 

that V is real-valued. By Lemma 3.12, it satisfies the independence axiom. 
The Archimedean axiom also is a simple consequence of Lemmas 3.10 and 
3.11, that is, if {M,} =. M, {N,} =, N and M, +, N,, then V(M) I V(N). 
Next, let Ha and Hb be simple, that is, each with finite support. Suppose 
(Ha+ H,). According to Lemma 3.10, the utilities V(Ha) and V(H,) are 
determined by some stage k of the induction, where k is the maximum index 
of the (finitely many) elements of &"in the combined supports of Ha and H,. 
Lemma 3.2 establishes that +, extends + . Then (L, +, L,) and thus 
V(Ha) < V(Hb).Therefore, 5 ,  extends + for simple lotteries. 

(ii) We argue that V almost agrees with + ,  that is, if (H, + H,), then 
(H, 5, H,). Here is a simple lemma about the changing endpoints of target 
sets which completes the theorem. 

LEMMA3.13. For every act H E H, and stage j = 2, .  .., (i) uj-, , (H)  I 
vj,(H) I u?(H) I v$,(H) and (ii) limj,, vj,(H) = vj*(H) = V(H). 



PARTIALLY ORDERED PREFERENCES 2211 

PROOF. (i) Since +j extends +j-l  , any sequence of j - 1stage prefer-
ences H, + j - l  x, B + (1 - x,)W also obtain at  stage j. Thus, by Definitions 
20 and 25 and Lemma 3.2(i), uj- ,  , (HI I uj,(H) Iuj*(H>Iuj*_ ,(HI. 

(ii) Foreachact 6E Z , V ( ~> i), vj,(Hi) = UJ*(H~)= v ~ H ~ )= vi.  Hence, 
(ii) is obvious for all simple lotteries. Assume H is not simple. It is easy 
to find a convergent sequence of simple acts in H R ,  {K,) -H, where 
u,*(K,) = u,*(K,) = V(K,) and H = y,K, + (1 - y,)M,. The sequence of 
acts M,, though elements of H R ,need not converge. Since H is not simple, 
y, < 1. Then, y,K, + ( 1  -y,)W <y,K, + (1-y,)M, +y,K, + (1-y,)B. 
As each +, extends + , we have y,V( K,) < u, ,( H )  I u,*(H) < Y,V(K,) + 
(1 -Y,). However, lim,,, y, = 1and, by Lemma 3.8, limn,, V(K,) = V(H). 
Thus, limj,,uj,(H) = limj,,vj*(H) = V(H). 

Finally, if (H, + Hz), since for each n, +, extends <, we have that 
u,,(H,) I v,*(H,). Then by Lemma 3.13, V(H,) I V(Hz). 

D. Other results from Section 3. 

PROOFOF COROLLARY3.1. The extensions +; created in Theorem 3 rely 
on the existence at stage i - 1of a nonempty target set z ( H i ) ,  only for the 
acts Hi €2'.However, z ( . )  is defined on all of H,, including the nonsimple 
acts. Hence, we can amend the sequence of extensions of + to fix utilities for 
any countable set of acts, in addition to fixing utilities for each element of 2 
Just modify the argument of Theorem 3 to assign utilities to the countable set 
&PUB'. 

In connection with Example 3.1, for instance, we can introduce acts Ha 
and H, into a well ordering of for example, {H,, Ha,H,, Hb,H ~ ,...1, SO 

that by stage 4 of the sequence of extensions, k, = V(Ha) < V(Hb)= k,, 
which precludes the undesired limit stage in which V(ri) = 0.25 (i = 1, ...1. 

Theorem 4 is easily demonstrated. 

PROOFOF THEOREM5. That 4 # TcX9 is part (i) of Theorem 4. For the 
converse, argue indirectly. If Z E X9/Tthen let & be the first element o f Z  
(that is, let k be the least integer) for'which z(H,) P3(&), even though 
u = Z( H,), ... ,u, - ,= Z( H,- ,) for acts H,, ...,H,- ,. Then Z agrees with 
<,- ,, since <,-, is the result of extending + by the conditions Hi = 
ui B + (1- ui)W (i  = 1, .. .,k - 1). That is, expand each + ,  ,-preference 
into a +-preference. The former follows from the latter by adding a set of 
k - 1assumptions {Hi= viB + (1- u,)W: (i = 1,... ,k - 1))to + .But these 
k - 1conditions are satisfied under Z, and Z agrees with + on simple acts. 
Hence, it must be that either Z(H,) = u, = u, ,(H,) and &(H,) is open at 
the lower end or else Z( H,) = v, = uz(H,) and &(H,) is open at the upper 
end. However, if the target set is open and if an endpoint U, of &(H,) is not a 
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candidate utility for &, then adding H,= u, B + (1- u,)W to <,-
produces a <,- ,-precluded preference. Since Z agrees with <,- ,, Z does 
not agree with any <,,-precluded preference. Thus, Z cannot assign act & 
the utility u,, which contradicts the assumption z(H,) = u,. 

E. Results from Section 4. The proof of Lemma 4.1 is immediate after 
Theorem 13.1 of Fishburn (1979). 

PROOFOF LEMMA4.2. Recall the strict preferences W < H < B, whenever 
W, B g supp(H). Hence, for each V, we may standardize the (expected) 
utility of act W as 0 and the (expected) utility of act B as 1, where all other 
acts (not involving W and B) have (expected) cardinal utilities in the open 
interval (0,l). Next, define a set of simple, called-off acts {Hi, E Hsj}, which 
yield the lottery outcome Li E L,.( , , ,) in state s, and outcome W in all other 
states. In keeping with this notation, let H , ,  = W and let HB, be the Hs j  
act with outcome B in state sj. Recall, for each j ,  lim, ,,{H;, j} *Hi, and 

- W. Then, whenever HLL< HLh(by HL Axiom 5), W < HA, <HE, = Hw,j-
H,:, < Hi,j .  Hence, by the Archimedean HL Axiom 3 (as in Lemma 2.31, we 
have the restriction 7(HB, ,  < H,,, < Hi, < W). Moreover, this constraint 
obtains also for each extension of < , including all the limit extensions 5, 
since these <-preferences involve simple acts. Then, for each V, W 5, 

H,, 5, Hi, 5, H,,,. Trivially, either W =, HB,, or else W <, H,, j. The 
upshot is that, for each V, one of two circumstances obtains: 

Case 1. If W =, HB,j, Ha, =, Hp, and s j  is null under 5, , so p(sj) = 0. 
Case 2. If W <, H,,,, then sj  is V-nonnull and for each representation of 

V as an expected, state-dependent utility [in accord with condition (4.111, 
U,(W) IU,(Li) IU,(L,) IU,(B), with a t  least one of the outside inequali-
ties strict. However, since the U, are defined only up to a similarity transfor-
mation, without loss of generality choose U,(W) = 0 and U;(B) = 1 and 
rescale p accordingly. 

PROOFOF LEMMA4.3. Without loss of generality (Corollary 3.3), let the 
denumerable sequence 2?= {Hi}of simple horse lotteries, used to create the 
set 7 of extensions for < , take {Hrl , .. . ,Hr } as its initial segment: the 
constant acts that award ri  in each state. sup;ose the interval 9;(r1) is not 
open, for example, 9;(r1) = [ u , ,  ,u?). Then 0 < v , ,  . Extend < according to 
the condition Hrl=, u,,B + (1 - u ,  ,)W. That is (by Definition 2.3), H, <, 
H, iff xH, + (1 - x)G1 < xH2 + (1- x)G;, where G, and G; are constant 
acts, symmetric mixtures of outcomes r, and u, ,  B + (1 - u ,  ,)W. 

We show that each V E 7 which extends <, (where V is standardly 
represented by the set of pairs {(p ,U,)} according to condition (4.1)) carries 
only state-independent utilities for r,. That is, for each such U;, U;(r,) = u ,  , 
if sj  is p-nonnull. To verify this claim, define act H, as follows: 
H - , , j ( ~ j )= ( v , ,  - s ) B + ( l - [ u , ,  -&])W and H-, , j (s)  = W  for s g s,. 

If state s, is not < -potentially null then, since u, ,  is the lower bound of 
9;(rl), by HL Axiom 4, we have V (u,, > E > 01, H-,,, < [Recall, 
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H,, j(sj) = r ,  and H,, j(s) = W when s @ sj.] By the Archimedean condition 

HL Axiom 3, letting E + 0, we find that these +-preferences create the 

constraint (H,,1 + HE= j), which applies also to each extension of ,, + . 

Thus, if sj is not + -potentially null, each V which extends +, has v, ,  as a 
lower bound on the state dependent utility U,(r,). Likewise, by appeal to HL 
Axiom 5 in case s; is + -potentially null, it follows that l (  HI, + HE=,, j) and 
this applies also to all extensions of + . So, again, v l ,  is a lower bound on 
the state dependent utility U,(r,) for cases where sj is + -potentially null but 
V-nonnull and 5, extends + (on simple acts). (Note: Here we use axiom 
HL Axiom 5 to regulate the state-dependent utility of lotteries in + -
potentially null states.) Because V(r,) = u, ,  for each 5,  that extends +, 
on simple acts, u , ,  also is an upper bound on all such V-nonnull state- 
dependent utilities U,(r,). This is so because v ,  ,= V(r,) is the p-expectation 
of U,(r,). Hence, each 5,  that so extends +, assigns to reward r, the 
state-independent utility u ,  ,. 

Next, assume that &(r,) is not an open interval, for example, let q ( r , )  = 

(u,,, u;], and we know u,* < 1.Thus, Hr2 +,(u,* + E)B + (1- [ u g  + E])W. 
Extend + to + by introducing the =, condition Hrz=, uzB + 
(1 - uz)W. That is, define +, by H, +, Hz iff xH1 + (1 - x)G, +, xH2 + 
(1 - x)G',, where G, and G', are constant horse lotteries, which are symmet- 
ric mixtures of acts Hrz and u,*B + (1- u; )W. 

To see that all 5,-extensions of +, impose a state-independent utility on 
r,, that is, to show U,(r,) = u,*, it suffices to demonstrate that u,*B+ 
(1- u,*)W serves as an upper utility bound for r, over all +,, sj-called-off 
preferences, called-off if sj fails. In other words, we are to establish that, for 
each state sj, the constraint l (H, ;+, ,  +, Hz, j) applies to +, and its 
extensions. Then, by the reasoning we used above, since V(r,) = u,* for all 
5, which extend +, (on simple acts), u; also is a lower utility bound for 
each state-dependent utility U,(r,), and thus U,(r,) is state-independent. 
That is, since V(r,) = v,* is the p-expectation of quantities, none of which is 
greater than u,*, then U,(r,) = u,* if P(sj) > 0. 

To establish that u; is such a state-independent upper bound, expand 
each of the relevant +,-preferences, to wit, V (1 - v; > E > 0) expand 
Hr2 +,(u,* + E)B + (1 - [ u g  + c])W, into its respective + -preference: 
3 x, > 0, 3 (G,,, G;,), 

Each pair (G,,,G;,) is a symmetric mixture of acts Hrl and v,,B + 
(1 - u, ,  )W. These + -preferences are between constant horse lottery acts. By 
appeal to HL Axiom 4 in case sj is not + -potentially null, or by appeal to HL 
Axiom 5 in case sj  is +-potentially null, we arrive at  a constraint for 
called-off acts involving the two lottery outcomes x,r, + (1 - x,)Gl, and 
x,[(u; + E)B + (1 - [ u ;  + E])W]+ (1 - x,)G;,. Specifically, we obtain the 
restriction 1(Hx+,, + Hx2,j)-a constraint on all extensions of + -where 

H,+,,;(sj) = x,[(u; + E ) B  + (1- [ u ;  + E] )w]  + ( 1  - x , ) q ,  and 
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Hx2,j(sj)=mar2+ ( 1  - x,)G,, and Hx2, j(s)= W i f s  P sj. 

However, each 5, extension of <, (on simple acts) assigns to r, the 
state-independent utility u, ,.Thus, each extension assigns G,, and G;, this 
same state-independent utility u, ,. Then, as the constraint 7(Hz+ ,, <, 
HX2,j )  obtains, so too does the constraint which results at  the limit, when 
E = 0, and terms G,, and G;, are canceled according to HL Axiom 2. Hence, 
each 5, extension of <, has the quantity u z  as an upper bound on the 
state-dependent utility U;(r,) of r,, provided sj is not null under 5,. 
Therefore, since V is a weighted average of U; values, U,(r,) = u; for each 
5,  that extends <, on simple acts. 

Proceed, this way, through the first n stages in the extension of < (using 
Theorem 31, by choosing for the ith stage either the condition Hr ziui ,B + 
(1 - u i ,  )W or the condition HrLziu: B + (1 - u,*)W,as q ( r i )is dlosed below 
or above (respectively). Then the set 7'of extensions for +, provides the 
requisite subset of 7.[Note: 7'may fail to be convex when q ( r i )  is a closed 
interval, as in the example for Theorem 1. Then either endpoint may be 
chosen, but not values in between.] 

F. Proof of Theorem 6. The proof of Theorem 6(i) is based on the idea of 
the proof of Lemma 4.3. The argument is by induction on the number of 
rewards, that is, on the length of the initial segment of {r,, r,, .. .). The 
method is a straightforward epsilon-delta technique of fixing the degree of 
state-dependence to be tolerated and then choosing target set values suffi-
ciently close to a boundary of the target sets to force agreement with the 
allowed tolerance for state-dependent utilities. 

The proof of Theorem 6(ii) follows the argument of Corollary 3.1; that is, 
use the countable set {9U 9)in forming the extensions of < , subject to the 
following modification in the ordering of (9~ 9 ) :Fix k, which determines 
the initial segment of 9 ,  {r,, ...,rk),over which the almost state-indepen-
dent utilities are to be provided. Given a nonsimple act H €9,insert it into 
the sequence of extensions based on Zonly after these k-many rewards have 
been assigned their utilities. This method ensures that assigning utilities to 
the nonsimple acts in 9 does not interfere with using the boundary regions 
of the target sets of the k-many rewards, {r,, .. .,rk),to locate their almost 
state-independent utilities. For interesting discussion of this point, see Sec-
tion 5 of Nau (1993). 

Two remarks help to explain the content of Theorem 6. First, in light of 
Example 4.1, it may be that for each E > 0, < admits an almost state-
independent utility, but (corresponding to & = 0) there is no agreeing proba-
bility/state-independent utility pair in the limit. That is, the limit (as E -t 0) 
of the (nested) sets of agreeing, almost state-independent utilities is empty. 
Second, Definition 31 requires only that < admit almost state-
independent utilities for each finite set of n-many rewards. Obviously, by 
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increasing n,  we can form sequences of (nested) sets of probability/utility 
pairs. However, Definition 31 does not provide for an almost state-indepen-
dent utility covering infinitely many rewards simultaneously. We do not yet 
know whether, given our five axioms, there exists a nonempty limit (as 
n + cc) to these nested sets. 

G. Results from Section 5. 

PROOFOF LEMMA5.1. (i) By HL Axiom 2, H, < Hz iff 0.5H1 + 0.5H; + 
0.5Hz + 0.5H;. Regrouping terms on the r.h.s. of the second < relation, we 
obtain H, < H, iff 0.5H1 + 0.5H; + 0.5H1 + 0.5Ha. Another application of 
HL Axiom 2 yields the desired result: H, < Hz iff H; < Ha. 

(ii) Suppose H, = Hz. By Corollary 2.3, it suffices to show that xH; + 
(1 - x)H3 + H4 iff xHa + (1 - x)H3 + H4.By HL Axiom 2, xH; + (1 - x)H3 
+ H4 iff z[xH; + (1 - x)H3] + (1 - z)H, + zH4 + (1 - z)H, (0 < z I1). 
Since H, = Hz ,  by Corollary 2.3, substituting Hz for H, on the l.h.s., the 
biconditional reads: iff z[xH; + (1 - x)H3] + (1 - z)Hz + zH4 + (1 - z)H,. 
Let zx = 1- z, that is, z = (1 + x)F1. Then regrouping terms in H; and 
H z ,  the biconditional reads: iff z[ xHa + (1 - x)H3] + (1 - z)H, + zH4 + 
(1- z)H,. Another application of HL Axiom 2 yields the desired result. 

PROOFOF THEOREM8. Part (i) is immediate as H e  is a subset of HR.  
Specifically, if a weak order 5, (of Theorem 3) agrees with <,  it  agrees 
with <,. That is, consider the e-called-off family He ,  where H(s) = W if 
s P e and <, is the restriction of < to He .  Let H, and Hz be simple acts 
that belong to He .  If H, <, Hz , then H, < Hz and therefore V(H,) + V(Hz). 
Let the expected utility V be given by the probability/(state-dependent) 
utility pair ( p ,  U,). As U,(W) = 0 and Hi(s) = W for s P e ( i  = 1,2), then 
C,, ,p(sj)U,(L,,) < C,, ,,p(sj)U,(Lzj). Hence, (p,, U,. ,) agrees with <,. 

For part (ii), without loss of generality (Lemma 5.11, continue with the 
e-called-off family H e  determined by fixing H(s) = W if s P e. Define the act 
Be E H e  by Be(s) = B if s E e. With respect to <, , Be serves as the "best" 
act and W serves as the "worst." Thus, for H E H e ,  V(Hle)V(Be) = V(H). 
Let Ve(.) agree with +, over the set He.  Assume Ve(.) differs from each 
conditional expected utility V(.le) (V E 7 ) .  In particular, with Reordered for 
applying Theorem 3 to <,, let Hz €Xe satisfy the following condition: For 
each V E 7 such that Ve(Hi) = V(H,le) ( i  = 1 , ... ,z - I), Ve(H,) # V(H,le). 
That is, Hz is the first e-called-off act, where Ve differs from each V(.le), 
V E 7 .  Without loss of generality, according to Corollary 3.3, put the first 
z-elements of &", as the initial segment of 2'.Thus, Hz is the z th  element in 
this reordering of 2. 

By hypothesis, for some V E 7 ,  Ve(Hi) = V(H, le) ( i  = 1,... ,z - 1).Then 
mimic the first z - 1extensions of <, in the first z - 1extensions of <.  
That is, provided e is not potentially null so that W < Be, use Definition 20 
to extend + to <,-, with symmetric mixtures of the z - 1act pairs: Hi 
and Ve(Hi)Be+ (1 - Ve(Hi))W. Also by hypothesis, <,-, cannot be ex-
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tended to <, using Definition 20 with symmetric mixtures of H, and 
Ve(H,)Be + (1 - Ve(H,))W. 

Next, we show that V,(H,) is an endpoint of the conditional target set 
Z(Hz) ,  defined using mixtures of Be and W. Argue indirectly: either H, <,-
Ve(Hz)Be+ (1 - Ve(H,))W or else Ve(H,)Be + (1 - V,(H,))W <,-, H,. We 
give the analysis for the former case. (The reasoning for the latter case is 
parallel.) Expand the <,-,-preference into its equivalent <-preference. 
Thus, for i = 1, .. . , z - 1, there exist xi 2 0, x, > 0, C,x, + x, = 1, such 
that 

where the pairs (G,, GI) are symmetric mixtures of Hi and V,(H,)B, + 
(1 - Ve(Hi))W. However, as this < -preference involves elements of only, 
then x,G, + ... +x,-,G,-, + x, Hz <, x,G; + ... +x,_,GL-, + x,[V,(H,) 
xBe  + (1 - V,(H,))W]. Thus V,(H,) Pz,,(H,)-a contraction with the as- 
sumption that V,(.) agrees with <,. Hence, V,(H,) is a precluded endpoint of 
the conditional %(Hz) according to preferences +,- ,, but it is not precluded 
from z,,(Hz) according to the subset of preferences in <,, , , II- . 
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